Then

In Chapter 2, you solved linear equations algebraically.

Now

In Chapter 3, you will:

- Identify linear equations, intercepts, and zeros.
- Graph and write linear equations.
- Use rate of change to solve problems.

KY Program of Studies

HS-AT-S-E19 Students will approximate and interpret rates of change from graphical and numerical data.

HS-AT-S-PRF18 Students will relate the patterns in arithmetic sequences to linear functions.

Why?

AMUSEMENT PARKS The Magic Kingdom in Orlando, Florida, is one of the most popular amusement parks in the world. Yearly attendance figures increase steadily each year. Quantities like populations that change with respect to time can be described using rate of change. Often you can represent these situations with linear functions.
Graph each ordered pair on a coordinate grid. (Lesson 1-6)
1. (−3, 3) 2. (−2, 1) 3. (3, 0)
4. (−5, 5) 5. (0, 6) 6. (2, −1)

Write the ordered pair for each point.

Solve each equation for y. (Lesson 2-8)
13. 3x + y = 1 14. 8 − y = x
15. 5x − 2y = 12 16. 3x + 4y = 10
17. 3 − \(\frac{1}{2}y\) = 5x 18. \(\frac{y + 1}{3}\) = x + 2

Evaluate \(\frac{a − b}{c − d}\) for each set of values. (Lesson 1-2)
19. a = 7, b = 6, c = 9, d = 5
20. a = −3, b = 0, c = 3, d = −1
21. a = −5, b = −5, c = 5, d = 8
22. a = −6, b = 3, c = 8, d = 2
23. MOVIES A movie released in theaters made $297.2 million in 22 weeks. How much did the movie make on average each week? (Lesson 1-3)

Evaluate \(\frac{a − b}{c − d}\) for a = 3, b = 5, c = −2, and d = −6.
\[
\frac{a − b}{c − d} = \frac{3 − 5}{−2 − (−6)} = \frac{−2}{4} = \frac{−2}{2} \div \frac{4}{2} = \frac{−1}{2} \text{ or } \frac{−1}{2}
\]
Get Started on Chapter 3

You will learn several new concepts, skills, and vocabulary terms as you study Chapter 3. To get ready, identify important terms and organize your resources. You may wish to refer to Chapter 0 to review prerequisite skills.

New Vocabulary

<table>
<thead>
<tr>
<th>English</th>
<th>Español</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear equation</td>
<td>ecuación lineal</td>
</tr>
<tr>
<td>standard form</td>
<td>forma estándar</td>
</tr>
<tr>
<td>constant</td>
<td>constante</td>
</tr>
<tr>
<td>x-intercept</td>
<td>intersección x</td>
</tr>
<tr>
<td>y-intercept</td>
<td>intersección y</td>
</tr>
<tr>
<td>parent function</td>
<td>crie la función</td>
</tr>
<tr>
<td>family of functions</td>
<td>la familia de funciones</td>
</tr>
<tr>
<td>root</td>
<td>raiz</td>
</tr>
<tr>
<td>rate of change</td>
<td>tasa de cambio</td>
</tr>
<tr>
<td>slope</td>
<td>pendiente</td>
</tr>
<tr>
<td>direct variation</td>
<td>variación directa</td>
</tr>
<tr>
<td>constant of variation</td>
<td>constante de variación</td>
</tr>
<tr>
<td>arithmetic sequence</td>
<td>sucesión aritmética</td>
</tr>
<tr>
<td>inductive reasoning</td>
<td>razonamiento inductivo</td>
</tr>
</tbody>
</table>

Review Vocabulary

- origin • p. 697 • origen the point where the two axes in a coordinate plane intersect with coordinates (0, 0)
- x-axis • p. 697 • eje x the horizontal number line on a coordinate plane
- y-axis • p. 697 • eje y the vertical number line on a coordinate plane

Foldables Study Organizer

Linear Functions Make this Foldable to help you organize your Chapter 3 notes about graphing relations and functions. Begin with four sheets of grid paper.

1. **Fold** each sheet of grid paper in half from top to bottom.
2. **Cut** along fold. Staple the eight half-sheets together to form a booklet.
3. **Cut** tabs into margin. The top tab is 4 lines wide, the next tab is 8 lines wide, and so on.
4. **Label** each of the tabs with a lesson number.

KY Math Online glencoe.com
- Study the chapter online
- Explore Math in Motion
- Get extra help from your own Personal Tutor
- Use Extra Examples for additional help
- Take a Self-Check Quiz
- Review Vocabulary in fun ways
Graphing Linear Equations

Why?

Recycling one ton of waste paper saves an average of 17 trees, 7000 gallons of water, 3 barrels of oil, and about 3.3 cubic yards of landfill space.

The relationship between the amount of paper recycled and the number of trees saved can be expressed with the equation $y = 17x$, where y represents the number of trees and x represents the tons of paper recycled.

Identify Linear Equations and Intercepts

A linear equation is an equation that forms a line when it is graphed. Linear equations are often written in the form $Ax + By = C$. This form is called the standard form of a linear equation. In this equation, C is called the constant. A constant is a number. Ax and By are variable terms.

Key Concept

For Your Words

The standard form of a linear equation is $Ax + By = C$, where $A \geq 0$, A and B are not both zero, and A, B, and C are integers with a greatest common factor of 1.

Examples

In $3x + 2y = 5$, $A = 3$, $B = 2$, and $C = 5$.

In $x = -7$, $A = 1$, $B = 0$, and $C = -7$.

EXAMPLE 1

Identify Linear Equations

Determine whether each equation is a linear equation. Write the equation in standard form.

a. $y = 4 - 3x$

Rewrite the equation so that it appears in standard form.

Original equation

$y = 4 - 3x$

Add $3x$ to each side. Simplify.

$y + 3x = 4 - 3x + 3x$

$3x + y = 4$

The equation is now in standard form where $A = 3$, $B = 1$, and $C = 4$. This is a linear equation.

b. $6x - xy = 4$

Since the term xy has two variables, the equation cannot be written in the form $Ax + By = C$. Therefore, this is not a linear equation.

Check Your Progress

1A. $\frac{1}{3}y = -1$
1B. $y = x^2 - 4$
A linear equation can be represented on a coordinate graph. The x-coordinate of the point at which the graph of an equation crosses the x-axis is an x-intercept. The y-coordinate of the point at which the graph crosses the y-axis is called a y-intercept.

The graph of a linear equation has at most one x-intercept and one y-intercept, unless it is the equation $y = 0$, in which every point of the graph is an x-intercept.

KCCT EXAMPLE 2 MA-HS-5.1.5

Find the x- and y-intercepts of the line graphed at the right.

A x-intercept is 0; y-intercept is 30.
B x-intercept is 20; y-intercept is 30.
C x-intercept is 20; y-intercept is 0.
D x-intercept is 30; y-intercept is 20.

Read the Test Item

We need to determine the x- and y-intercepts of the line in the graph.

Solve the Test Item

Step 1 Find the x-intercept. Look for the point where the line crosses the x-axis.

The line crosses at $(20, 0)$. The x-intercept is 20 because it is the x-coordinate of the point where the line crosses the x-axis.

Step 2 Find the y-intercept. Look for the point where the line crosses the y-axis.

The line crosses at $(0, 30)$. The y-intercept is 30 because it is the y-coordinate of the point where the line crosses the y-axis.

Thus, the answer is B.

Check Your Progress

2. **HEALTH** The graph shows the cost of a gym membership. Find the x- and y-intercepts of the graph.

F x-intercept is 0; y-intercept is 150.
G x-intercept is 150; y-intercept is 0.
H x-intercept is 150; no y-intercept.
J No x-intercept; y-intercept is 150.

When equations represent a real-world situation, the x- and y-intercepts have a real-world meaning.
Real-World Example 3 Find Intercepts

SWIMMING POOL A swimming pool is being drained at a rate of 720 gallons per hour. The table shows the function relating the volume of water in a pool and the time in hours that the pool has been draining.

a. Find the \(x \)-intercept and \(y \)-intercept of the graph of the function.

\[
x - \text{intercept} = 14 \quad \text{i.e.} \quad 14 \text{ is the value of } x \text{ when } y = 0.
\]

\[
y - \text{intercept} = 10,080 \quad \text{i.e.} \quad 10,080 \text{ is the value of } y \text{ when } x = 0.
\]

b. Describe what the intercepts mean in terms of this situation.

The \(x \)-intercept 14 means that after 14 hours, the water has a volume of 0 gallons, or the pool is completely drained.

The \(y \)-intercept 10,080 means that the pool contained 10,080 gallons of water at time 0, or before it started to drain. This is shown in the graph.

Check Your Progress

3. **DRIVING** The Torrez family are driving to an amusement park. The table shows the function relating the distance to the park in miles and the time in hours they have driven. Find the \(x \)- and \(y \)-intercepts of the function. Describe what the intercepts mean in the context of this situation.

Graph Linear Equations By first finding the \(x \)- and \(y \)-intercepts, you have two ordered pairs of two points through which the graph of the linear equation passes. This information can be used to graph the line because only two points are needed to graph a line.

Example 4 Graph by Using Intercepts

Graph \(2x + 4y = 16 \) by using the \(x \)- and \(y \)-intercepts.

To find the \(x \)-intercept, let \(y = 0 \).

\[
\begin{align*}
2x + 4y &= 16 \quad \text{Original equation} \\
2x + 4(0) &= 16 \quad \text{Replace } y \text{ with } 0. \\
2x &= 16 \quad \text{Simplify}. \\
x &= 8 \quad \text{Divide each side by } 2.
\end{align*}
\]

The \(x \)-intercept is 8. This means that the graph intersects the \(x \)-axis at (8, 0).

(continued on the next page)
To find the y-intercept, let $x = 0$.

$2x + 4y = 16$ \hspace{1cm} \text{Original equation} \\
2(0) + 4y = 16 \hspace{1cm} \text{Replace } x \text{ with 0.} \\
4y = 16 \hspace{1cm} \text{Simplify.} \\
y = 4 \hspace{1cm} \text{Divide each side by 4.}

The y-intercept is 4. This means the graph intersects the y-axis at $(0, 4)$.

Plot these two points and then draw a line through them.

Check Your Progress

Graph each equation by using the x- and y-intercepts.

4A. $-x + 2y = 3$
4B. $y = -x - 5$

Note that the equation in Example 4 has both an x- and a y-intercept. Some lines have an x-intercept and no y-intercept or vice versa. The graph of $y = b$ is a horizontal line that only has a y-intercept. The intercept occurs at $(0, b)$. The graph of $x = a$ is a vertical line that only has an x-intercept. The intercept occurs at $(a, 0)$.

Every ordered pair that makes an equation true represents a point on the graph. So, the graph of an equation represents all of its solutions. Any ordered pair that does not make the equation true represents a point that is not on the line.

EXAMPLE 5 \hspace{1cm} **Graph by Making a Table**

Graph $y = \frac{1}{3}x + 2$.

The domain is all real numbers, so there are infinitely many solutions. Select values from the domain and make a table. When the x-coefficient is a fraction, select a number from the domain that is a multiple of the denominator. Create ordered pairs and graph them.

<table>
<thead>
<tr>
<th>x</th>
<th>$\frac{1}{3}x + 2$</th>
<th>y</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$\frac{1}{3}(-3) + 2$</td>
<td>1</td>
<td>$(-3, 1)$</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{1}{3}(0) + 2$</td>
<td>2</td>
<td>$(0, 2)$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{3}(3) + 2$</td>
<td>3</td>
<td>$(3, 3)$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{1}{3}(6) + 2$</td>
<td>4</td>
<td>$(6, 4)$</td>
</tr>
</tbody>
</table>

Check Your Progress

Graph each equation by making a table.

5A. $2x - y = 2$
5B. $x = 3$
5C. $y = -2$
Lesson 3-1
Graphing Linear Equations

Check Your Understanding

Example 1
p. 153
Determine whether each equation is a linear equation. Write *yes* or *no*. If yes, write the equation in standard form.

1. \(x = y - 5\)
2. \(-2x - 3 = y\)
3. \(-4y + 6 = 2\)
4. \(\frac{2}{3}x - \frac{1}{3}y = 2\)

Examples 2 and 3
pp. 154–155
Find the \(x\)- and \(y\)-intercepts of each linear function. Describe what the intercepts mean.

5. **Increasing Temperature**

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
</tr>
</tbody>
</table>

6. **Position of Scuba Diver**

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-24</td>
</tr>
<tr>
<td>3</td>
<td>-18</td>
</tr>
<tr>
<td>6</td>
<td>-12</td>
</tr>
<tr>
<td>9</td>
<td>-6</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 4
p. 155
Graph each equation by using the \(x\)- and \(y\)-intercepts.

7. \(y = 4 + x\)
8. \(2x - 5y = 1\)

Example 5
p. 156
Graph each equation by making a table.

9. \(x + 2y = 4\)
10. \(-3 + 2y = -5\)
11. \(y = 3\)
12. **RODEOS** Tickets for a championship rodeo cost $5 for children and $10 for adults. The equation \(5x + 10y = 60\) represents the number of children \(x\) and adults \(y\) who can attend the rodeo for $60.

 a. Use the \(x\)- and \(y\)-intercepts to graph the equation.
 b. Describe what these values mean.

Practice and Problem Solving

Example 1
p. 153
Determine whether each equation is a linear equation. Write *yes* or *no*. If yes, write the equation in standard form.

13. \(5x + y^2 = 25\)
14. \(8 + y = 4x\)
15. \(9xy - 6x = 7\)
16. \(4y^2 + 9 = -4\)
17. \(12x = 7y - 10y\)
18. \(y = 4x + x\)

Examples 2 and 3
pp. 154–155
Find the \(x\)- and \(y\)-intercepts of each linear function.

19.

20.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Find the \(x \)- and \(y \)-intercepts of each linear function. Describe what the intercepts mean.

21. **Descent of Eagle**

![Graph of Descent of Eagle](image)

22. **Eva’s Distance from Home**

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Distance (mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

23. Graph each equation by using the \(x \)- and \(y \)-intercepts.

24. \(y = 4 + 2x \)
25. \(5 - y = -3x \)
26. \(x + y = 4 \)
27. \(x - y = -3 \)
28. \(y = 8 - 6x \)

29. Graph each equation by making a table.

30. \(y = -4 \)
31. \(y = -8x \)
32. \(y = 10 - y \)

33. **TV RATINGS** The number of people who watch a singing competition can be given by the equation \(p = 0.15v \), where \(p \) represents the number of people in millions who saw the show and \(v \) is the number of potential viewers in millions.

 a. Make a table of values for the points \((v, p)\).

 b. Graph the equation.

 c. Use the graph to estimate the number of people who saw the show if there are 14 million potential viewers.

 d. Explain why it would not make sense for \(v \) to be a negative number.

Determine whether each equation is a linear equation. Write yes or no. If yes, write the equation in standard form.

36. \(x + \frac{1}{y} = 7 \)
37. \(\frac{x}{2} = 10 + \frac{2y}{3} \)
38. \(7n - 8m = 4 - 2m \)
39. \(3a + b - 2 = b \)
40. \(2r - 3rt + 5t = 1 \)
41. \(\frac{3m}{4} = \frac{2n}{3} - 5 \)

42. **COMMISSION** James earns a monthly salary of $1200 and a commission of $125 for each car he sells.

 a. Graph an equation that represents how much James earns in a month in which he sells \(x \) cars.

 b. Use the graph to estimate the number of cars James needs to sell in order to earn $5000.

Graph each equation.

43. \(2.5x - 4 = y \)
44. \(1.25x + 7.5 = y \)
45. \(y + \frac{1}{5}x = 3 \)
46. \(\frac{2}{3}x + y = -7 \)
47. \(2x - 3 = 4y + 6 \)
48. \(3y - 7 = 4x + 1 \)

49. **VACATION** Mrs. Johnson is renting a car for spring break and plans to drive a total of 300 miles. A rental car costs $50 for the week and $0.25 per mile. If Mrs. Johnson has only $100 to spend on the rental car, can she afford to rent a car? Explain your reasoning.
50. **AMUSEMENT PARKS** An amusement park charges $50 for admission before 6 P.M. and $20 for admission after 6 P.M. On Saturday, the park took in a total of $20,000.

 a. Write an equation that represents the number of admissions that may have been sold. Let \(x \) represent the number of admissions sold before 6 P.M., and let \(y \) represent the number of admissions sold after 6 P.M.

 b. Graph the equation.

 c. Find the \(x \)- and \(y \)-intercepts of the graph. What does each intercept represent?

Find the \(x \)- and \(y \)-intercepts of each equation.

51. \(5x + 3y = 15 \)

52. \(2x - 7y = 14 \)

53. \(2x - 3y = 5 \)

54. \(6x + 2y = 8 \)

55. \(y = \frac{1}{4}x - 3 \)

56. \(y = \frac{2}{3}x + 1 \)

57. **ONLINE GAMES** The percent of teens who play online games can be modeled by \(p = \frac{15}{4}t + 66 \). \(p \) is the percent of students and \(t \) represents time in years since 2000.

 a. Graph the equation.

 b. Use the graph to estimate the percent of students playing the games in 2008.

58. **MULTIPLE REPRESENTATIONS** In this problem, you will explore \(x \)- and \(y \)-intercepts of linear equations.

 a. **GRAPHICAL** If possible, use a straightedge to draw a line with each of the following characteristics.

<table>
<thead>
<tr>
<th>(x)- and (y)-intercept</th>
<th>(x)-intercept, no (y)-intercept</th>
<th>2 (x)-intercepts</th>
<th>no (x)-intercept, (y)-intercept</th>
<th>2 (y)-intercepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)- and (y)-intercept</td>
<td>(x)-intercept, no (y)-intercept</td>
<td>2 (x)-intercepts</td>
<td>no (x)-intercept, (y)-intercept</td>
<td>2 (y)-intercepts</td>
</tr>
</tbody>
</table>

 b. **ANALYTICAL** For which characteristics were you able to create a line and for which characteristics were you unable to create a line? Explain.

 c. **VERBAL** What must be true of the \(x \)- and \(y \)-intercepts of a line?

59. **CHALLENGE** Copy and complete each table. State whether the table shows a linear relationship. Explain.

 Perimeter of a Square
<table>
<thead>
<tr>
<th>Side Length</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

 Area of a Square
<table>
<thead>
<tr>
<th>Side Length</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

 Volume of a Cube
<table>
<thead>
<tr>
<th>Side Length</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

60. **REASONING** Compare and contrast the graphs of \(y = 2x + 1 \) with the domain \(\{1, 2, 3, 4\} \) and \(y = 2x + 1 \) with the domain of all real numbers.

 OPEN ENDED Give an example of a linear equation of the form \(Ax + By = C \) for each condition. Then describe the graph of the equation.

 61. \(A = 0 \)
 62. \(B = 0 \)
 63. \(C = 0 \)

64. **WRITING IN MATH** Explain how to find the \(x \)-intercept and \(y \)-intercept of a graph and summarize how to graph a linear equation.
65. Sancho can ride 8 miles on his bicycle in 30 minutes. At this rate, how long would it take him to ride 30 miles?
 A 8 hours
 B 6 hours 32 minutes
 C 2 hours
 D 1 hour 53 minutes

66. GEOMETRY Which is a true statement about the relation graphed?
 F The relation is not a function.
 G Surface area is the independent quantity.
 H The surface area of a cube is a function of the side length.
 J As the side length of a cube increases, the surface area decreases.

67. SHORT RESPONSE Selena deposited $2000 into a savings account that pays 1.5% interest compounded annually. If she does not deposit any more money into her account, how much will she earn in interest at the end of one year?

68. A candle is 24 centimeters high and burns 3 centimeters per hour, as shown in the graph.

69. FUNDRAISING The Madison High School Marching Band sold solid-color gift wrap for $4 and print gift wrap for $6 per roll. The total number of rolls sold was 480, and the total amount of money collected was $2,340. How many rolls of each kind of gift wrap were sold? (Lesson 2-9)

Solve each equation or formula for the variable specified. (Lesson 2-8)

70. \(S = \frac{n}{2}(A + t) \), for \(A \)

71. \(2g - m = 5 - gh \), for \(g \)

72. \(\frac{y + a}{3} = c \), for \(y \)

73. \(4z + b = 2z + c \), for \(z \)

Evaluate each expression if \(x = 2 \), \(y = 5 \), and \(z = 7 \). (Lesson 1-2)

74. \(3x^2 - 4y \)

75. \(\frac{x - y^2}{2z} \)

76. \(\left(\frac{y}{z} \right)^2 + \frac{xy}{2} \)

77. \(z^2 - y^3 + 5x^2 \)
Solving Linear Equations by Graphing

Why?

Many teenagers have braces on their teeth. The cost of braces can vary widely. The graph at the right shows the balance of the cost of treatments as payments are made. This is modeled by the function \(b = -85p + 5100 \), where \(p \) represents the number of $85 payments made, and \(b \) is the remaining balance to be paid.

Solve by Graphing

A linear function is a function with a graph of a line. The simplest linear function is \(f(x) = x \) and is called the parent function of the family of linear functions. A family of graphs is a group of graphs with one or more similar characteristics.

The solution or root of an equation is any value that makes the equation true. A linear equation has at most one root. You can find the root of an equation by graphing its related function. To write the related function for an equation, replace 0 with \(f(x) \).

Values of \(x \) for which \(f(x) = 0 \) are called zeros of the function \(f \). The zero of a function is located at the \(x \)-intercept of the function. The root of an equation is the value of the \(x \)-intercept. So:

- 4 is the \(x \)-intercept of \(2x - 8 = 0 \).
- 4 is the solution of \(2x - 8 = 0 \).
- 4 is the root of \(2x - 8 = 0 \).
- 4 is the zero of \(f(x) = 2x - 8 \).
EXAMPLE 1 Solve an Equation with One Root

Solve each equation.

a. \(0 = \frac{1}{3}x - 2\)

Method 1 Solve algebraically.

\[
0 = \frac{1}{3}x - 2 \\
0 + 2 = \frac{1}{3}x - 2 + 2 \\
3(2) = 3\left(\frac{1}{3}x\right) \\
6 = x
\]

The solution is 6.

b. \(3x + 1 = -2\)

Method 2 Solve by graphing.

Find the related function. Set the equation equal to 0.

\[
3x + 1 = -2 \\
3x + 1 + 2 = -2 + 2 \\
3x + 3 = 0
\]

The related function is \(f(x) = 3x + 3\). To graph the function, make a table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = 3x + 3)</th>
<th>(f(x))</th>
<th>([x, f(x)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>(f(-2) = 3(-2) + 3)</td>
<td>-3</td>
<td>((-2, -3))</td>
</tr>
<tr>
<td>1</td>
<td>(f(1) = 3(1) + 3)</td>
<td>6</td>
<td>((1, 6))</td>
</tr>
</tbody>
</table>

The graph intersects the \(x\)-axis at -1. So, the solution is -1.

Check Your Progress

1A. \(0 = \frac{2}{5}x + 6\)
1B. \(-1.25x + 3 = 0\)

For equations with the same variable on each side of the equation, use addition or subtraction to get the terms with variables on one side. Then solve.

EXAMPLE 2 Solve an Equation with No Solution

Solve each equation.

a. \(3x + 7 = 3x + 1\)

Method 1 Solve algebraically.

\[
3x + 7 = 3x + 1 \\
3x + 7 - 1 = 3x + 1 - 1 \\
3x + 6 = 3x \\
3x - 3x + 6 = 3x - 3x \\
6 = 0
\]

The related function is \(f(x) = 6\). The root of a linear equation is the value of \(x\) when \(f(x) = 0\). Since \(f(x)\) is always equal to 6, this equation has no solution.
Lesson 3-2 Solving Linear Equations by Graphing

b. \(2x - 4 = 2x - 6\)

Method 2 Solve by graphing.

\[
\begin{align*}
2x - 4 &= 2x - 6 & \text{Original equation} \\
2x - 4 + 6 &= 2x - 6 + 6 & \text{Add 6 to each side.} \\
2x + 2 &= 2x & \text{Simplify.} \\
2x - 2x + 2 &= 2x - 2x & \text{Subtract 2x from each side.} \\
2 &= 0 & \text{Simplify.}
\end{align*}
\]

Graph the related function, which is \(f(x) = 2\). The graph of the line does not intersect the \(x\)-axis. Thus, there is no solution.

Check Your Progress

2A. \(4x + 3 = 4x - 5\)
2B. \(2 - 3x = 6 - 3x\)

Estimate Solutions by Graphing Graphing may provide only an estimate. In these cases, solve algebraically to find the exact solution.

Real-World Example 3 Estimate by Graphing

AMUSEMENT PARKS Emily is going to a local carnival. The function \(m = 20 - 0.75r\) represents the amount of money \(m\) she has left after \(r\) rides. Find the zero of this function. Describe what this value means in this context.

Make a table of values.

\[
\begin{array}{|c|c|c|}
\hline
r & m = 20 - 0.75r & (r, m) \\
\hline
0 & m = 20 - 0.75(0) & 20 (0, 20) \\
5 & m = 20 - 0.75(5) & 16.25 (5, 16.25) \\
\hline
\end{array}
\]

The graph appears to intersect the \(x\)-axis at 27.

Next, solve algebraically to check.

\[
\begin{align*}
m &= 20 - 0.75r & \text{Original equation} \\
0 &= 20 - 0.75r & \text{Related function} \\
0 + 0.75r &= 20 - 0.75r + 0.75r & \text{Add 0.75r to each side.} \\
0.75r &= 20 & \text{Simplify.} \\
\frac{0.75r}{0.75} &= \frac{20}{0.75} & \text{Divide each side by 0.75.} \\
r &\approx 26.67 & \text{Simplify and round to the nearest hundredth.}
\end{align*}
\]

The zero of this function is 26.67. Since Emily cannot ride part of a ride, she can ride 26 rides before she will run out of money.

Check Your Progress

3. **FUNDRAISING** Antoine’s class is selling candy to raise money for a class trip. They paid $45 for the candy, and they are selling each candy bar for $1.50. The function \(y = 1.50x - 45\) represents their profit \(y\) for each candy bar \(x\) sold. Find the zero and describe what it means in the context of this situation.
Solve each equation.

1. \(-2x + 6 = 0\)
2. \(-x - 3 = 0\)
3. \(4x - 2 = 0\)
4. \(9x + 3 = 0\)
5. \(2x - 5 = 2x + 8\)
6. \(4x + 11 = 4x - 24\)
7. \(3x - 5 = 3x - 10\)
8. \(-6x + 3 = -6x + 5\)
9. **NEWSPAPERS** The function \(w = 30 - \frac{3}{4}n\) represents the weight of the papers in Tyrone’s newspaper delivery bag \(w\) in pounds after he delivers \(n\) newspapers. Find the zero and explain what it means in the context of this situation.

22. **TEXT MESSAGING** Sean is sending text messages to his friends. The function \(y = 6 - \frac{x}{5}\) represents the number of words \(y\) the message can hold after each word \(x\) he types. Find the zero and explain what it means in the context of this situation.

23. **GIFT CARDS** For her birthday Kwan receives a $50 gift card to download songs. The function \(m = -0.50d + 50\) represents the amount of money \(m\) that remains on the card after a number of songs \(d\) are downloaded. Find the zero and explain what it means in the context of this situation.

Solve each equation.

10. \(0 = x - 5\)
11. \(0 = x + 3\)
12. \(5 - 8x = 16 - 8x\)
13. \(3x - 10 = 21 + 3x\)
14. \(4x - 36 = 0\)
15. \(0 = 7x + 10\)
16. \(2x + 22 = 0\)
17. \(5x - 5 = 5x + 2\)
18. \(-7x + 35 = 20 - 7x\)
19. \(-4x - 28 = 3 - 4x\)
20. \(0 = 6x - 8\)
21. \(12x + 132 = 12x - 100\)

36. **SEA LEVEL** New Orleans lies 2.4 meters below sea level. Since it is below sea level, rainfall often causes flooding. The equation \(w = 0.3d - 2.4\) represents the water level \(w\) in meters after \(d\) days of rain. Find the zero and explain what it means in the context of this situation.

37. **ICE SCULPTURE** An artist completed an ice sculpture when the temperature was \(-10^\circ\)C. The equation \(t = 1.25h - 10\) shows the temperature \(t\) after the sculpture’s completion. If the artist completed the sculpture at 8:00 A.M., at what time will the sculpture begin to melt?

Solve each equation by graphing. Verify your answer algebraically.

38. \(7 - 3x = 8 - 4x\)
39. \(19 + 3x = 13 + x\)
40. \(16x + 6 = 14x + 10\)
41. \(15x - 30 = 5x - 50\)
42. \(\frac{1}{2}x - 5 = 3x - 10\)
43. \(3x - 11 = \frac{1}{3}x - 8\)

According to market research, text messages are likely to be sent or received by those between the ages of 13 and 24. In 2006, 158 billion text messages were sent nationwide, nearly double the amount in 2005.

Source: The Wireless Association
44. **HAIR PRODUCTS** Chemical hair straightening makes curly hair straight and smooth. The percent of the process left to complete is modeled by \(p = -12.5t + 100 \), where \(t \) is the time in minutes that the solution is left on the hair, and \(p \) represents the percent of the process left to complete.

 a. Find the zero of this function.
 b. Make a graph of this situation.
 c. Explain what the zero represents in this context.
 d. State the possible domain and range of this function.

45. **MUSIC DOWNLOADS** In this problem, you will investigate the change between two quantities.

 a. Copy and complete the table.

<table>
<thead>
<tr>
<th>Number of Songs Downloaded</th>
<th>Total Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

 b. As the number of songs downloaded increases, how does the total cost change?
 c. Interpret the value of the total cost divided by the number of songs downloaded.

46. **FIND THE ERROR** Clarissa and Koko solve \(3x + 5 = 2x + 4 \) by graphing the related function. Is either of them correct? Explain your reasoning.

 Clarissa
 \[3x + 5 = 2x + 4 \]
 \[x + 5 = 4 \]
 \[y = x + 5 + 4 \]
 \[y = x + 9 \]
 \[x = -9 \]

 Koko
 \[3x + 5 = 2x + 4 \]
 \[x + 5 = 4 \]
 \[x + 1 = 0 \]
 \[y = x + 1 \]
 \[x = -1 \]

47. **CHALLENGE** Use a graphing calculator to find the solution of \(\frac{2}{3}(x + 3) = \frac{1}{2}(x + 5) \). Verify your solution algebraically.

48. **REASONING** Explain when it is better to solve an equation using algebraic methods and when it is better to solve by graphing.

49. **OPEN ENDED** Write a linear equation that has a root of \(-\frac{3}{4} \). Write its related function.

50. **WRITING IN MATH** Summarize how to solve a linear equation algebraically and graphically.
51. What are the \(x \)- and \(y \)-intercepts of the function?

\[
\text{Graph showing a linear function with intercepts.}
\]

A \((-3, 0)\) and \((0, 6)\)
B \((-3, 0)\) and \((6, 0)\)
C \((0, -3)\) and \((0, 6)\)
D \((0, -3)\) and \((6, 0)\)

52. The table shows the cost \(C \) of renting a pontoon boat for \(h \) hours.

<table>
<thead>
<tr>
<th>Hours</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.25</td>
</tr>
<tr>
<td>2</td>
<td>14.5</td>
</tr>
<tr>
<td>3</td>
<td>21.75</td>
</tr>
</tbody>
</table>

Which equation best represents the data?

F \(C = 7.25h \)
G \(C = h + 7.25 \)
H \(C = 21.75 - 7.25h \)
J \(C = 7.25h + 21.75 \)

53. Which is the best estimate for the \(x \)-intercept of the graph of the linear function represented in the table?

A between 0 and 1
B between 2 and 3
C between 1 and 2
D between 3 and 4

54. EXTENDED RESPONSE Mr. Kauffmann has the following options for a backyard pool.

Which pool would give the greatest area to swim? Explain your reasoning.

55. Find the \(x \)- and \(y \)-intercepts of each linear equation. (Lesson 3-1)

56. \(y = 2x + 10 \)

57. \(3y = 6x - 9 \)

58. FOOD If 2% milk contains 2% butterfat and whipping cream contains 9% butterfat, how much whipping cream and 2% milk should be mixed to obtain 35 gallons of milk with 4% butterfat? (Lesson 2-9)

59. Identify the hypothesis and conclusion of each statement. Then write each statement in if-then form. (Lesson 1-8)

59. A number that is divisible by 10 is also divisible by 5.

60. A rectangle is a quadrilateral with four right angles.

56. \(3y = 6x - 9 \)

57. \(4x - 14y = 28 \)

Simplify. (Lesson 0-3)

61. \(\frac{25}{10} \)

62. \(\frac{-4}{-12} \)

63. \(\frac{6}{-12} \)

64. \(\frac{-36}{8} \)

Evaluate \(\frac{a - b}{c - d} \) for the given values. (Lesson 1-2)

65. \(a = 6, b = 2, c = 9, d = 3 \)

66. \(a = -8, b = 4, c = 5, d = -3 \)

67. \(a = 4, b = -7, c = -1, d = -2 \)
The power of a graphing calculator is the ability to graph different types of equations accurately and quickly. By entering one or more equations in the calculator you can view features of a graph, such as the x-intercept, y-intercept, the origin, intersections, and the coordinates of specific points. Now we will look at how to graph a linear equation.

Often linear equations are graphed in the standard viewing window. The **standard viewing window** is $[-10, 10]$ by $[-10, 10]$ with a scale of 1 on each axis. To quickly choose the standard viewing window on a TI-83/84 Plus, press `Zoom` 6.

ACTIVITY 1 Graph a Linear Equation

Graph $3x - y = 4$.

Step 1 Enter the equation in the $Y= $ list.

- The $Y=$ list shows the equation or equations that you will graph.
- Equations must be entered with the y isolated on one side of the equation. Solve the equation for y, then enter it into the calculator.

\[
3x - y = 4 \\
3x - y - 3x = 4 - 3x \\
-y = -3x + 4 \\
y = 3x - 4
\]

KEYSTROKES: $Y= 3x - 4$

Step 2 Graph the equation in the standard viewing window.

- Graph the selected equation.

KEYSTROKES: `Zoom` 6

Sometimes a complete graph is not displayed using the standard viewing window. A **complete graph** includes all of the important characteristics of the graph on the screen. These include the origin and the x- and y-intercepts. Note that $3x - y = 4$ is a complete graph because all of these points are visible.

When a complete graph is not displayed using the standard viewing window, you will need to change the viewing window to accommodate these important features. Use what you have learned about intercepts to help you choose an appropriate viewing window.
ACTIVITY 2 Graph a Complete Graph

Graph \(y = 5x - 14 \).

Step 1 Enter the equation in the Y= list and graph in the standard viewing window.
- Clear the previous equation from the Y= list. Then enter the new equation and graph.

KEYSTROKES:

\[
\text{Y= | CLEAR } 5 \, [X,T,\theta,n] - 14 \, \text{Zoom} \]

Step 2 Modify the viewing window and graph again.
- The origin and the \(x \)-intercept are displayed in the standard viewing window. But notice that the \(y \)-intercept is outside of the viewing window.

Find the \(y \)-intercept.

\[
y = 5x - 14 \hspace{1cm} \text{Original equation}
\]

\[
= 5(0) - 14 \hspace{1cm} \text{Replace } x \text{ with } 0.
\]

\[= -14 \hspace{1cm} \text{Simplify.}
\]

Since the \(y \)-intercept is \(-14\), choose a viewing window that includes a number less than \(-14\). The window \([-10, 10]\) by \([-20, 5]\) with a scale of 1 on each axis is a good choice.

KEYSTROKES:

\[
\text{WINDOW } -10 \, \text{ENTER } 10 \, \text{ENTER } 1 \, \text{ENTER } -20 \, \text{ENTER } 5 \, \text{ENTER } 1 \, \text{GRAPH}
\]

Exercises

Use a graphing calculator to graph each equation in the standard viewing window. Sketch the result.

1. \(y = x + 5 \)
2. \(y = 5x + 6 \)
3. \(y = 9 - 4x \)
4. \(3x + y = 5 \)
5. \(x + y = -4 \)
6. \(x - 3y = 6 \)

Graph each linear equation in the standard viewing window. Determine whether the graph is complete. If the graph is not complete, choose a viewing window that will show a complete graph and graph the equation again.

7. \(y = 4x + 7 \)
8. \(y = 9x - 5 \)
9. \(y = 2x - 11 \)
10. \(4x - y = 16 \)
11. \(6x + 2y = 23 \)
12. \(x + 4y = -36 \)

Consider the linear equation \(y = 3x + b \).

13. Choose several different positive and negative values for \(b \). Graph each equation in the standard viewing window.

14. For which values of \(b \) is the complete graph in the standard viewing window?

15. How is the value of \(b \) related to the \(y \)-intercept of the graph of \(y = 3x + b \)?
In mathematics, you can measure the steepness of a line using a ratio.

Set Up the Lab
- Stack three books on your desk.
- Lean a ruler on the books to create a ramp.
- Tape the ruler to the desk.
- Measure the **rise** and the **run**. Record your data in a table like the one at the right.
- Calculate and record the ratio \(\frac{\text{rise}}{\text{run}} \).

ACTIVITY

Step 1
Move the books to make the ramp steeper. Measure and record the **rise** and the **run**. Calculate and record \(\frac{\text{rise}}{\text{run}} \).

Step 2
Add books to the stack to make the ramp even steeper. Measure, calculate, and record your data in the table.

Analyze the Results

1. Examine the ratios you recorded. How do they change as the ramp became steeper?

2. **MAKE A PREDICTION** Suppose you want to construct a skateboard ramp that is not as steep as the one shown at the left. List three different sets of \(\frac{\text{rise}}{\text{run}} \) measurements that will result in a less steep ramp. Verify your predictions by calculating the ratio \(\frac{\text{rise}}{\text{run}} \) for each ramp.

3. Copy the coordinate graph and draw a line through the origin with a ratio \(\frac{\text{rise}}{\text{run}} \) greater than the original line. Then draw a line through the origin with a ratio less than that of the original line. Explain using the words **rise** and **run** why the lines you drew have a ratio greater or less than the original line.

4. We have seen what happens on the graph as the ratio \(\frac{\text{rise}}{\text{run}} \) gets closer to zero. What would you predict will happen when the ratio is zero? Explain your reasoning. Give an example to support your prediction.
Rate of Change and Slope

Why?

The Daredevil Drop at Wet ‘n Wild Emerald Pointe in Greensboro, North Carolina, is a thrilling ride that drops you 76 feet down a steep water chute. The rate of change of the ride describes how far a rider goes over the course of time on the ride.

Rate of Change is a ratio that describes, on average, how much one quantity changes with respect to a change in another quantity.

Key Concept

If \(x \) is the independent variable and \(y \) is the dependent variable, then

\[
\text{rate of change} = \frac{\text{change in } y}{\text{change in } x}.
\]

Real-World Example 1

Find Rate of Change

ENTERTAINMENT

Use the table to find the rate of change. Then explain its meaning.

<table>
<thead>
<tr>
<th>Number of</th>
<th>Total Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Games</td>
<td>(y)</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>156</td>
</tr>
<tr>
<td>6</td>
<td>234</td>
</tr>
</tbody>
</table>

rate of change = \(\frac{\text{change in } y}{\text{change in } x} \)

= \(\frac{156 - 78}{4 - 2} \)

= \(\frac{78}{2} \) or \(\frac{39}{1} \)

The rate of change is \(\frac{39}{1} \). This means that each game costs $39.

Check Your Progress

1. REMODELING The table shows how the tiled surface area changes with the number of floor tiles.

A. Find the rate of change.

B. Explain the meaning of the rate of change.

<table>
<thead>
<tr>
<th>Number of Floor Tiles</th>
<th>Area of Tiled Surface (in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>144</td>
</tr>
</tbody>
</table>
So far, you have seen rates of change that are constant. Many real-world situations involve rates of change that are not constant.

Example 2 Variable Rate of Change

AMUSEMENT PARKS The graph shows the number of people who visited U.S. theme parks in recent years.

1996–1998:
\[
\frac{\text{change in attendance}}{\text{change in time}} = \frac{81.8 - 78.8}{1998 - 1996} = \frac{3}{2} \text{ or } 1.5
\]
Over this 2-year period, attendance increased by 3 million, for a rate of change of 1.5 million per year.

2000–2002:
\[
\frac{\text{change in attendance}}{\text{change in time}} = \frac{92.4 - 84.6}{2002 - 2000} = \frac{7.8}{2} \text{ or } 3.9
\]
Over this 2-year period, attendance increased by 7.8 million, for a rate of change of 3.9 million per year.

b. Explain the meaning of the rate of change in each case.

For 1996–1998, on average, 1.5 million more people went to a theme park each year than the last.

For 2000–2002, on average, 3.9 million more people attended theme parks each year than the last.

c. How are the different rates of change shown on the graph?

There is a greater vertical change for 2000–2002 than for 1996–1998. Therefore, the section of the graph for 2000–2002 is steeper.

Check Your Progress

2. Refer to the graph above. Without calculating, find the 2-year period that has the least rate of change. Then calculate to verify your answer.

A rate of change is constant for a function when the rate of change is the same between any pair of points on the graph of the function. Linear functions have a constant rate of change.
EXAMPLE 3 Constant Rates of Change

Determine whether each function is linear. Explain.

a.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−6</td>
</tr>
<tr>
<td>4</td>
<td>−8</td>
</tr>
<tr>
<td>7</td>
<td>−10</td>
</tr>
<tr>
<td>10</td>
<td>−12</td>
</tr>
<tr>
<td>13</td>
<td>−14</td>
</tr>
</tbody>
</table>

rate of change

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−6</td>
</tr>
<tr>
<td>4</td>
<td>−8</td>
</tr>
<tr>
<td>7</td>
<td>−10</td>
</tr>
<tr>
<td>10</td>
<td>−12</td>
</tr>
<tr>
<td>13</td>
<td>−14</td>
</tr>
</tbody>
</table>

The rate of change is constant.

Thus, the function is linear.

b.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3</td>
<td>10</td>
</tr>
<tr>
<td>−1</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
</tr>
</tbody>
</table>

rate of change

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3</td>
<td>10</td>
</tr>
<tr>
<td>−1</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
</tr>
</tbody>
</table>

This rate of change is not constant. Thus, the function is not linear.

Check Your Progress

3A.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3</td>
<td>11</td>
</tr>
<tr>
<td>−2</td>
<td>15</td>
</tr>
<tr>
<td>−1</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
</tr>
</tbody>
</table>

3B.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>−4</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

Find Slope The slope of a line is the ratio of the change in the y-coordinates (rise) to the change in the x-coordinates (run) as you move from one point to another.

It can be used to describe a rate of change. Slope describes how steep a line is. The greater the absolute value of the slope, the steeper the line.

The graph shows a line that passes through (−1, 3) and (2, −2).

slope = \frac{\text{rise}}{\text{run}} = \frac{\text{change in y-coordinates}}{\text{change in x-coordinates}} = \frac{−2 − 3}{2 − (−1)}\quad\text{or}\quad\frac{−5}{3}

So, the slope of the line is \(−\frac{5}{3}\).

Because a linear function has a constant rate of change, any two points on a line can be used to determine its slope.
Words The slope of a line is the ratio of the rise to the run.

Symbols The slope \(m \) of a non-vertical line through any two points, \((x_1, y_1)\) and \((x_2, y_2)\), can be found as follows.

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

The slope of a line can be positive, negative, zero, or undefined. If the line is not horizontal or vertical, then the slope is either positive or negative.

EXAMPLE 4 Positive, Negative, and Zero Slope

Find the slope of a line that passes through each pair of points.

a. \((-2, 0)\) and \((1, 5)\)

Let \((-2, 0) = (x_1, y_1)\) and \((1, 5) = (x_2, y_2)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{rise} \quad \text{run}
\]

\[
= \frac{5 - 0}{1 - (-2)} \quad \text{Substitute.}
\]

\[
= \frac{5}{3} \quad \text{Simplify.}
\]

b. \((-3, 4)\) and \((2, -3)\)

Let \((-3, 4) = (x_1, y_1)\) and \((2, -3) = (x_2, y_2)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{rise} \quad \text{run}
\]

\[
= \frac{-3 - 4}{2 - (-3)} \quad \text{Substitute.}
\]

\[
= \frac{-7}{5} \quad \text{or} \quad -\frac{7}{5} \quad \text{Simplify.}
\]

c. \((-3, -1)\) and \((2, -1)\)

\[
m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{rise} \quad \text{run}
\]

\[
= \frac{-1 - (-1)}{2 - (-3)} \quad \text{Substitute.}
\]

\[
= \frac{0}{2} \quad \text{or} \quad 0 \quad \text{Simplify.}
\]

Check Your Progress

Find the slope of the line that passes through each pair of points.

4A. \((3, 6), (4, 8)\)
4B. \((-4, -2), (0, -2)\)
4C. \((-4, 2), (-2, 10)\)
4D. \((6, 7), (-2, 7)\)
4E. \((-2, 2), (-6, 4)\)
4F. \((4, 3), (-1, 11)\)
EXAMPLE 5 Undefined Slope

Find the slope of the line that passes through (−2, 4) and (−2, −3).

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

Substitute.

\[= \frac{-3 - 4}{-2 - (-2)} \]

Simplify.

\[= \frac{-7}{0} \text{ or undefined} \]

Check Your Progress

Find the slope of the line that passes through each pair of points.

5A. (6, 3), (6, 7)
5B. (−3, 2), (−3, −1)

The graphs of lines with different slopes are summarized below.

Concept Summary

Slope

<table>
<thead>
<tr>
<th>Positive Slope</th>
<th>Negative Slope</th>
<th>Slope of 0</th>
<th>Undefined Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line slopes up from left to right</td>
<td>Line slopes down from left to right</td>
<td>Horizontal line</td>
<td>Vertical line</td>
</tr>
</tbody>
</table>

Sometimes you are given the slope and must find a missing coordinate.

EXAMPLE 6 Find Coordinates Given the Slope

Find the value of \(r \) so that the line through (1, 4) and (−5, \(r \)) has a slope of \(\frac{1}{3} \).

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

Slope Formula

\[\frac{1}{3} = \frac{r - 4}{-5 - 1} \]

Let (1, 4) = (\(x_1, y_1 \)) and (−5, \(r \)) = (\(x_2, y_2 \)).

Subtract.

\[3(r - 4) = 1(-6) \]

Find the cross products.

\[3r - 12 = -6 \]

Simplify.

\[3r = 6 \]

Add 12 to each side and simplify.

\[r = 2 \]

Divide each side by 3 and simplify.

So, the line goes through (−5, 2).

Check Your Progress

Find the value of \(r \) so the line that passes through each pair of points has the given slope.

6A. (−2, 6), (\(r, -4 \)); \(m = -5 \)
6B. (\(r, -6 \)), (5, −8); \(m = -8 \)
Check Your Understanding

Example 1

Find the rate of change represented in each table or graph.

1.

 ![Graph](image)

2.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>−6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
</tr>
</tbody>
</table>

Example 2

3. **SPORTS** Refer to the graph at the right.

 a. Find the rate of change of prices from 2002 to 2004. Explain the meaning of the rate of change.

 b. Without calculating, find a two-year period that had a greater rate of change than 2002–2004. Explain.

 c. Between which years would you guess the new stadium was built? Explain your reasoning.

Example 3

Determine whether each function is linear. Write *yes* or *no*. Explain.

4.

<table>
<thead>
<tr>
<th>x</th>
<th>−7</th>
<th>−4</th>
<th>−1</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

5.

<table>
<thead>
<tr>
<th>x</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>−2</td>
</tr>
</tbody>
</table>

Examples 4 and 5

Find the slope of the line that passes through each pair of points.

6. (5, 3), (6, 9)
7. (−4, 3), (−2, 1)
8. (6, −2), (8, 3)
9. (1, 10), (−8, 3)
10. (−3, 7), (−3, 4)
11. (5, 2), (−6, 2)

Example 6

Find the value of r so the line that passes through each pair of points has the given slope.

12. (−4, r), (−8, 3), $m = −5$
13. (5, 2), (−7, r), $m = \frac{5}{6}$

Practice and Problem Solving

Example 1

Find the rate of change represented in each table or graph.

14.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

15.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>−3</td>
</tr>
</tbody>
</table>
Find the rate of change represented in each table or graph.

Example 1

16. y \[x \quad -4 \quad 24 \quad 68 \quad 10 \]
 \[-6 \quad -8 \quad -10 \]
 \[(3, -1) \]

17. y \[x \quad -4 \quad 24 \quad 68 \quad 10 \]
 \[-6 \quad -8 \quad -10 \]
 \[(4, -2) \]

Example 2

18. **SPORTS** What was the annual rate of change from 1995 to 2003 for women competing in triathlons? Explain the meaning of the rate of change.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>4600</td>
</tr>
<tr>
<td>2003</td>
<td>19,100</td>
</tr>
</tbody>
</table>

19. **RETAIL** The average retail price in the spring of 2008 for a used car is shown in the table at the right.
 a. Write a linear function to model the price of the car with respect to age.
 b. Interpret the meaning of the slope of the line.
 c. Predict the average retail price for a 7-year-old car.

Example 3

Determine whether each function is linear. Write yes or no. Explain.

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>2</th>
<th>0</th>
<th>-2</th>
<th>-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>-7</th>
<th>-5</th>
<th>-3</th>
<th>-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1/2</th>
<th>3/2</th>
<th>5/2</th>
<th>7/2</th>
<th>9/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1/2</td>
<td>1</td>
<td>3/2</td>
<td>2</td>
<td>5/2</td>
</tr>
</tbody>
</table>

Examples 4 and 5

Find the slope of the line that passes through each pair of points.

24. (4, 3), (-1, 6)
25. (8, -2), (1, 1)
26. (2, 2), (-2, -2)
27. (6, -10), (6, 14)
28. (5, -4), (9, -4)
29. (11, 7), (-6, 2)
30. (-3, 5), (3, 6)
31. (-3, 2), (7, 2)
32. (8, 10), (-4, -6)
33. (-8, 6), (-8, 4)
34. (-12, 15), (18, -13)
35. (-8, -15), (-2, 5)

Example 6

Find the value of r so the line that passes through each pair of points has the given slope.

36. (12, 10), (-2, r), $m = -4$
37. (r, -5), (3, 13), $m = 8$
38. (3, 5), (-3, r), $m = \frac{3}{4}$
39. (-2, 8), (r, 4), $m = -\frac{1}{2}$

ESTIMATION Use a ruler to estimate the slope of each object.
42. **DRIVING** When driving up a certain hill, you rise 15 feet for every 1000 feet you drive forward. What is the slope of the road?

Find the slope of the line that passes through each pair of points.

43.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>-1</td>
</tr>
<tr>
<td>5.3</td>
<td>2</td>
</tr>
</tbody>
</table>

44.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>1</td>
</tr>
<tr>
<td>0.75</td>
<td>-1</td>
</tr>
</tbody>
</table>

45.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

46. **GROWTH RATE** After her last haircut, May’s hair was 8 inches long. In three months, it grew another inch at a steady rate. Assume that her hair growth continues at the same rate.

a. Make a table that shows May’s hair length for each of the three months and for the next three months.

b. Draw a graph showing the relationship between May’s hair length and time in month.

c. What is the slope of the graph? What does it represent?

47. **BASKETBALL** The table shown below shows the average points per game (PPG) Michael Redd, of the NBA’s Milwaukee Bucks, has scored each season of his career.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PPG</td>
<td>2.2</td>
<td>11.4</td>
<td>15.1</td>
<td>21.7</td>
<td>23.0</td>
<td>25.4</td>
<td>26.7</td>
</tr>
</tbody>
</table>

a. Make a graph of the data. Connect each pair of adjacent points with a line.

b. Use the graph to determine in which period Michael Redd’s PPG increased the fastest. Explain your reasoning.

c. Discuss the difference in the rate of change from the 2000–01 through the 2003–04 seasons and from the 2003–04 through the 2006–07 seasons.

H.O.T. Problems

Use Higher-Order Thinking Skills

48. **REASONING** Why does the Slope Formula not work for vertical lines? Explain.

49. **OPEN ENDED** Use what you know about rate of change to describe the function represented by the table.

50. **CHALLENGE** Find the value of \(d \) so the line that passes through \((a, b)\) and \((c, d)\) has a slope of \(\frac{1}{2}\).

51. **WRITING IN MATH** Explain how the rate of change and slope are related and how to find the slope of a line.

52. **FIND THE ERROR** Kyle and Luna are finding the value of \(x \) so the line that passes through \((10, x)\) and \((-2, 8)\) has a slope of \(\frac{1}{4}\). Is either of them correct? Explain your reasoning.

Kyle

\[
\frac{2-10}{8-x} = \frac{1}{4} \\
4(8-x) = 1(-12) \\
32 - 4x = -12 \\
x = 10
\]

Luna

\[
\frac{8-x}{-2-10} = \frac{1}{4} \\
4(8-x) = 1(-12) \\
32 - 4x = -12 \\
x = 11
\]
53. The cost of prints from an online photo processor is given by \(C(p) = 29.99 + 0.13p \). $29.99 is the cost of the membership, and \(p \) is the number of 4-inch by 6-inch prints. What does the slope represent?
A cost per print
B cost of the membership
C cost of the membership and 1 print
D number of prints

54. Danita bought a computer for $1200 and its value depreciated linearly. After 2 years, the value was $250. What was the amount of yearly depreciation?
F $950
G $475
H $250
J $225

55. SHORT RESPONSE
The graph represents how much the Wright Brothers National Monument charges visitors. How much does the park charge each visitor?

Wright Brothers National Monument

56. PROBABILITY
At a gymnastics camp, 1 gymnast is chosen at random from each team. The Flipstars Gymnastics Team consists of 5 eleven-year-olds, 7 twelve-year-olds, 10 thirteen-year-olds, and 8 fourteen-year-olds. What is the probability that the gymnast chosen has an age that is an odd number?
A \(\frac{1}{30} \)
B \(\frac{1}{15} \)
C \(\frac{1}{2} \)
D \(\frac{3}{5} \)

Spiral Review

Solve each equation by graphing. (Lesson 3-2)

57. \(3x + 18 = 0 \)
58. \(8x - 32 = 0 \)
59. \(0 = 12x - 48 \)

Find the \(x \)- and \(y \)-intercepts of each linear function. (Lesson 3-1)

60.

61.

62. HOMECOMING
Dance tickets are $9 for one person and $15 for two people. If a group of seven students wishes to go to the dance, write and solve an equation that would represent the least expensive price \(p \) of their tickets. (Lesson 1-3)

Skills Review

Find each quotient. (Lesson 0-4)

63. \(\frac{8}{3} \div \frac{2}{3} \)
64. \(\frac{3}{8} \div \frac{1}{4} \)
65. \(\frac{5}{8} \div 2 \)
66. \(\frac{12 \cdot 6}{9} \)
67. \(\frac{2 \cdot 15}{6} \)
68. \(\frac{18 \cdot 5}{15} \)
Determine whether each equation is a linear equation. Write yes or no. If yes, write the equation in standard form. (Lesson 3-1)

1. \(y = -4x + 3 \)
2. \(x^2 + 3y = 8 \)
3. \(\frac{1}{4}x - \frac{3}{4}y = -1 \)

Graph each equation using the x- and y-intercepts. (Lesson 3-1)

4. \(y = 3x - 6 \)
5. \(2x + 5y = 10 \)

Graph each equation by making a table. (Lesson 3-1)

6. \(y = -2x \)
7. \(x = 8 - y \)

8. **BOOK SALES** The equation \(5x + 12y = 240 \) describes the total amount of money collected when selling \(x \) paperback books at \$5 per book and \(y \) hardback books at \$12 per book. Graph the equation using the \(x \) and \(y \) intercepts. (Lesson 3-1)

Find the root of each equation. (Lesson 3-2)

9. \(x + 8 = 0 \)
10. \(4x - 24 = 0 \)
11. \(18 + 8x = 0 \)
12. \(\frac{3}{5}x - \frac{1}{2} = 0 \)

Solve each equation by graphing. (Lesson 3-2)

13. \(-5x + 35 = 0 \)
14. \(14x - 84 = 0 \)
15. \(118 + 11x = -3 \)

16. **MULTIPLE CHOICE** The function \(y = -15 + 3x \) represents the outside temperature, in degrees Fahrenheit, in a small Alaskan town where \(x \) represents the number of hours after midnight. The function is accurate for \(x \) values representing midnight through 4:00 p.m. Find the zero of this function. (Lesson 3-2)

A. \(x = 0 \)
B. \(x = 3 \)
C. \(x = 5 \)
D. \(x = -15 \)

17. Find the rate of change represented in the table. (Lesson 3-3)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

Find the slope of the line that passes through each pair of points. (Lesson 3-3)

18. \((2, 6), (4, 12) \)
19. \((1, 5), (3, 8) \)
20. \((-3, 4), (2, -6) \)
21. \(\left(\frac{1}{3}, \frac{3}{4}\right), \left(\frac{2}{3}, \frac{1}{4}\right) \)

22. **MULTIPLE CHOICE** Find the value of \(r \) so the line that passes through the pair of points has the given slope. (Lesson 3-3)

\((-4, 8), (r, 12), m = \frac{4}{3}\)

F. \(r = -4 \)
G. \(r = -1 \)
H. \(r = 0 \)
J. \(r = 3 \)

23. Find the slope of the line that passes through the pair of points. (Lesson 3-3)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>-2</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
</tr>
</tbody>
</table>

24. **POPULATION GROWTH** The graph shows the population growth in Leesburg, Florida, since 2000. (Lesson 3-3)

a. For which time period is the rate of change the greatest?
b. Explain the meaning of the slope from 2000 to 2006.
Direct Variation

Why?

Bianca is saving her money to buy a designer purse that costs $295. To help raise the money, she charges $12.50 per hour to babysit her neighbors’ two children. The slope of the line that represents the amount of money Bianca earns is 12.5, and the rate of change is constant.

Direct Variation Equations A direct variation is described by an equation of the form $y = kx$, where $k \neq 0$. The equation $y = kx$ illustrates a constant rate of change, and k is the constant of variation, also called the constant of proportionality. Any letter may be used as a variable.

EXAMPLE 1 Slope and Constant of Variation

Name the constant of variation for each equation. Then find the slope of the line that passes through each pair of points.

a.

The constant of variation is -4.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope Formula

$$= \frac{4 - 0}{-1 - 0}$$

$$= -4$$

The slope is -4.

b.

The constant of variation is $\frac{1}{2}$.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope Formula

$$= \frac{3 - 0}{6 - 0}$$

$$= \frac{1}{2}$$

The slope is $\frac{1}{2}$.

Check Your Progress

1A. Name the constant of variation for $y = \frac{1}{4}x$. Then find the slope of the line that passes through $(0, 0)$ and $(4, 1)$, two points on the line.

1B. Name the constant of variation for $y = -2x$. Then find the slope of the line that passes through $(0, 0)$ and $(1, -2)$, two points on the line.

The slope of the graph of $y = kx$ is k. Since $(0, 0)$ is a solution of $y = kx$, the graph of $y = kx$ always passes through the origin. Therefore the x- and y-intercepts are zero.
EXAMPLE 2 Graph a Direct Variation

Graph \(y = -6x \).

Step 1 Write the slope as a ratio.
\[-6 = \frac{-6}{1} \]

Step 2 Graph \((0, 0)\).

Step 3 From the point \((0, 0)\), move down 6 units and right 1 unit. Draw a dot.

Step 4 Draw a line containing the points.

Check Your Progress

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2A.</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>2B.</td>
<td>(y = \frac{2}{3}x)</td>
</tr>
<tr>
<td>2C.</td>
<td>(y = -5x)</td>
</tr>
<tr>
<td>2D.</td>
<td>(y = -\frac{3}{4}x)</td>
</tr>
</tbody>
</table>

The graphs of all direct variation equations share some common characteristics.

Concept Summary

- Direct variation equations are of the form \(y = kx \), where \(k \neq 0 \).
- The graph of \(y = kx \) always passes through the origin.
- The slope is positive if \(k > 0 \).
- The slope is negative if \(k < 0 \).

EXAMPLE 3 Write and Solve a Direct Variation Equation

Suppose \(y \) varies directly as \(x \), and \(y = 72 \) when \(x = 8 \).

a. Write a direct variation equation that relates \(x \) and \(y \).

\[
\begin{align*}
y &= kx & \text{Direct variation formula} \\
72 &= k(8) & \text{Replace } y \text{ with } 72 \text{ and } x \text{ with } 8. \\
9 &= k & \text{Divide each side by } 8.
\end{align*}
\]

Therefore, the direct variation equation is \(y = 9x \).

b. Use the direct variation equation to find \(x \) when \(y = 63 \).

\[
\begin{align*}
y &= 9x & \text{Direct variation formula} \\
63 &= 9x & \text{Replace } y \text{ with } 63. \\
7 &= x & \text{Divide each side by } 9.
\end{align*}
\]

Therefore, \(x = 7 \) when \(y = 63 \).

Check Your Progress

3. Suppose \(y \) varies directly as \(x \), and \(y = 98 \) when \(x = 14 \). Write a direct variation equation that relates \(x \) and \(y \). Then find \(y \) when \(x = -4 \).
Direct Variation Problems One of the most common applications of direct variation is the formula \(d = rt \). Distance \(d \) varies directly as time \(t \), and the rate \(r \) is the constant of variation.

Example 4

Estimate Using Direct Variation

TRAVEL The distance a jet travels varies directly as the number of hours it flies. A jet traveled 3420 miles in 6 hours.

a. Write a direct variation equation for the distance \(d \) flown in time \(t \).

<table>
<thead>
<tr>
<th>Words</th>
<th>Distance equals rate times time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Let (r =) rate.</td>
</tr>
<tr>
<td>Equation</td>
<td>(3420 = r \times 6)</td>
</tr>
</tbody>
</table>

Solve for the rate.

\[
3420 = r(6) \quad \text{Original equation}
\]

\[
\frac{3420}{6} = \frac{r(6)}{6} \quad \text{Divide each side by 6.}
\]

\[
570 = r \quad \text{Simplify.}
\]

Therefore, the direct variation equation is \(d = 570t \). The airliner flew at a rate of 570 miles per hour.

b. Graph the equation.

The graph of \(d = 570t \) passes through the origin with slope 570.

\[
m = \frac{570}{1} \quad \text{rise} \quad \text{run}
\]

c. Estimate how many hours it will take for an airliner to fly 6500 miles.

\[
d = 570t \quad \text{Original equation}
\]

\[
6500 = 570t \quad \text{Replace} \ d \ \text{with} \ 6500.
\]

\[
\frac{6500}{570} = \frac{570t}{570} \quad \text{Divide each side by 570.}
\]

\[
t \approx 11.4 \quad \text{Simplify.}
\]

At this rate, it would take the airliner approximately 11.4 hours to fly 6500 miles.

Check Your Progress

4. **HOT-AIR BALLOONS** A hot-air balloon’s ascent varies directly as the number of minutes. A hot-air balloon ascended 350 feet in 5 minutes.

A. Write a direct variation for the distance \(d \) ascended in time \(t \).

B. Graph the equation.

C. Estimate how many minutes it would take the hot-air balloon to ascend 2100 feet.

D. About how many minutes would it take the hot-air balloon to ascend 3500 feet?
Check Your Understanding

Example 1
Name the constant of variation for each equation. Then find the slope of the line that passes through each pair of points.

1. \(y = -\frac{4}{5}x\)
2. \(y = 2x\)

Example 2
Graph each equation.

3. \(y = -x\)
4. \(y = \frac{3}{4}x\)
5. \(y = -8x\)
6. \(y = -\frac{8}{5}x\)

Example 3
Suppose \(y\) varies directly as \(x\). Write a direct variation equation that relates \(x\) and \(y\). Then solve.

7. If \(y = 15\) when \(x = 12\), find \(y\) when \(x = 32\).
8. If \(y = -11\) when \(x = 6\), find \(x\) when \(y = 44\).

Example 4
9. MESSAGE BOARDS
You find that the number of messages you receive on your message board varies directly as the number of messages you post. When you post 5 messages, you receive 12 messages in return.

a. Write a direct variation equation relating your posts to the messages received. Then graph the equation.

b. Find the number of messages you need to post to receive 96 messages.

Practice and Problem Solving

Example 1
Name the constant of variation for each equation. Then find the slope of the line that passes through each pair of points.

10. \(y = 4x\)
11. \(y = -\frac{4}{5}x\)
12. \(y = \frac{2}{3}x\)
13. \(y = \frac{1}{3}x\)
14. \(y = \frac{4}{3}x\)
15. \(y = -\frac{12}{5}x\)
Example 2
Graph each equation.

16. \(y = 10x \)
17. \(y = -7x \)
18. \(y = x \)
19. \(y = \frac{7}{6}x \)
20. \(y = \frac{1}{6}x \)
21. \(y = \frac{2}{9}x \)
22. \(y = \frac{6}{5}x \)
23. \(y = -\frac{5}{4}x \)

Example 3
Suppose \(y \) varies directly as \(x \). Write a direct variation equation that relates \(x \) and \(y \). Then solve.

24. If \(y = 6 \) when \(x = 10 \), find \(x \) when \(y = 18 \).
25 If \(y = 22 \) when \(x = 8 \), find \(y \) when \(x = -16 \).
26. If \(y = 4\frac{1}{4} \) when \(x = \frac{3}{4} \), find \(y \) when \(x = 4\frac{1}{2} \).
27. If \(y = 12 \) when \(x = \frac{6}{7} \), find \(x \) when \(y = 16 \).

Example 4
28. SPORTS The distance a golf ball travels at an altitude of 7000 feet varies directly with the distance the ball travels at sea level, as shown.

\[\begin{array}{c|c|c}
\text{Altitude (ft)} & 0 \text{ (sea level)} & 7000 \\
\hline
\text{Distance (yd)} & 200 & 210
\end{array} \]

a. Write and graph an equation that relates the distance a golf ball travels at an altitude of 7000 feet \(y \) with the distance at sea level \(x \).

b. What would be a person’s average driving distance at 7000 feet if his average driving distance at sea level is 180 yards?

29. USED CARS Depreciation is the decline in a car’s value over the course of time. The table below shows the values of a car with an average depreciation.

<table>
<thead>
<tr>
<th>Age of Car (years)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (dollars)</td>
<td>12,000</td>
<td>10,200</td>
<td>8400</td>
<td>6600</td>
<td>4800</td>
</tr>
</tbody>
</table>

a. Write an equation that relates the age of the car to the value it lost after each year.

b. Find the equivalent age of the car if the value is $300.

Suppose \(y \) varies directly as \(x \). Write a direct variation equation that relates \(x \) and \(y \). Then solve.

30. If \(y = 3.2 \) when \(x = 1.6 \), find \(y \) when \(x = 19 \).
31. If \(y = 15 \) when \(x = \frac{3}{4} \), find \(x \) when \(y = 25 \).
32. If \(y = 4.5 \) when \(x = 2.5 \), find \(y \) when \(x = 12 \).
33. If \(y = -6 \) when \(x = 1.6 \), find \(y \) when \(x = 8 \).

ENDANGERED SPECIES Certain endangered species experience rise and fall cycles in their populations. Which line in the graph represents the population cycle of each animal?

34. red grouse, 8 years per cycle
35. voles, 3 years per cycle
36. lemmings, 4 years per cycle
37. lynx, 10 years per cycle.
Write and graph a direct variation equation that relates the variables.

38. **PHYSICAL SCIENCE** The weight \(W \) of an object is 9.8 m/s\(^2 \) times the mass of the object \(m \).

39. **MUSIC** Music downloads are 0.99 per song. The total cost of \(d \) songs is \(T \).

40. **GEOMETRY** The circumference of a circle \(C \) is approximately 3.14 times the diameter \(d \).

41. **MULTIPLE REPRESENTATIONS** In this problem, you will investigate the family of direct variation functions.
 - **GRAPHICAL** Graph \(y = x \), \(y = 3x \), and \(y = 5x \) on the same coordinate plane.
 - **ALGEBRAIC** Describe the relationship among the constant of variation, the slope of the line, and the rate of change of the graph.
 - **VERBAL** Make a conjecture about how you can determine without graphing which of two direct variation equations has the graph with a steeper slope.

42. **TRAVEL** A map of North Carolina is scaled so that 3 inches represents 93 miles. How far apart are Raleigh and Charlotte if they are 1.8 inches apart on the map?

43. **INTERNET** A Web design company advertises that it will design and maintain a Web site for your company for $9.95 per month. Write a direct variation equation to find the total cost \(C \) for having a Web page for \(n \) months.

44. **BASEBALL** Before the inaugural game, high school student Todd McCormick warmed all 5200 seats in the new stadium built for the York Revolution minor league baseball team. He started at 11:50 A.M. and finished around 3 P.M., two hours before gates opened for the game.
 - **a.** Write a direct variation equation relating the number of seats to time. What is the meaning of the constant of variation in this situation?
 - **b.** About how many seats had Todd sat in by 1:00 P.M.?
 - **c.** How long would you expect it to take Todd to sit in all of the seats at a major league stadium with more than 40,000 seats?

45. **WHICH ONE DOESN'T BELONG?** Identify the equation that does not belong with the other three. Explain your reasoning.

 - \(9 = rt \)
 - \(9a = 0 \)
 - \(z = \frac{1}{9}x \)
 - \(w = \frac{9}{t} \)

46. **REASONING** How are the constant of variation and the slope related in a direct variation equation? Explain your reasoning.

47. **OPEN ENDED** Model a real-world situation using a direct variation equation. Graph the equation and describe the rate of change.

48. **CHALLENGE** Suppose \(y \) varies directly as \(x \). If the value of \(x \) is doubled, then the value of \(y \) is also always, sometimes or never doubled. Explain your reasoning.

49. **FIND THE ERROR** Eddy says the slope between any two points on the graph of a direct variation equation \(y = kx \) is \(\frac{1}{k} \). Adelle says the slope depends on the points chosen. Is either of them correct? Explain.

50. **WRITING IN MATH** Describe the graph of a direct variation equation.

Real-World Link

More than 41 million fans attended Minor League Baseball games in 2006. Minor League Baseball draws more fans than the NBA or NFL.

Source: Minor League Baseball
51. Patricia pays $1.19 each to download songs to her MP3 player. If \(n \) is the number of downloaded songs, which equation represents the cost \(C \) in dollars?

\[A \quad C = 1.19n \]
\[B \quad n = 1.19C \]
\[C \quad C = 1.19 \div n \]
\[D \quad C = n + 1.19 \]

52. Suppose that \(y \) varies directly as \(x \), and \(y = 8 \) when \(x = 6 \). What is the value of \(y \) when \(x = 8 \)?

\[F \quad 6 \]
\[G \quad 12 \]
\[H \quad 10 \frac{2}{3} \]
\[J \quad 16 \]

53. What is the relationship between the input \((x)\) and output \((y)\)?

\[A \quad \text{The output is two more than the input.} \]
\[B \quad \text{The output is two less than the input.} \]
\[C \quad \text{The output is twice the input.} \]
\[D \quad \text{The output is half the input.} \]

54. SHORT RESPONSE A telephone company charges $40 per month plus $0.07 per minute. How much would a month of service cost a customer if the customer talked for 200 minutes?

55. TELEVISION The graph shows the average number of television channels American households receive. What was the annual rate of change in average number of television channels from 2004 to 2006? Explain the meaning of the rate of change. (Lesson 3-3)

56. \(0 = 18 - 9x \)
57. \(2x + 14 = 0 \)
58. \(-4x + 16 = 0 \)
59. \(-5x - 20 = 0 \)
60. \(8x - 24 = 0 \)
61. \(12x - 144 = 0 \)

Evaluate each expression if \(a = 4 \), \(b = -2 \), and \(c = -4 \). (Lesson 2-6)

62. \(|2a + c| + 1\)
63. \(4a - |3b + 2|\)
64. \(-|a + 1| + |3c|\)
65. \(-a + |2 - a|\)
66. \(|c - 2b| - 3\)
67. \(-2|3b - 8|\)

Skills Review

Find each difference. (Lesson 0-3)

68. \(13 - (-1)\)
69. \(4 - 16\)
70. \(-3 - 3\)
71. \(-8 - (-2)\)
72. \(16 - (-10)\)
73. \(-8 - 4\)

186 Chapter 3 Linear Functions
Then
You identified linear functions. (Lesson 3-1)

Now
• Recognize arithmetic sequences.
• Relate arithmetic sequences to linear functions.

KY Program of Studies
HS-AT-S-PRF1 Students will use explicitly-defined or recursively defined functions to generalize patterns.
HS-AT-S-PRF18 Students will relate the patterns in arithmetic sequences to linear functions. Also addresses HS-AT-S-PRF6 and HS-AT-S-EI17.

New Vocabulary
sequence
terms
arithmetic sequence
common difference

KY Math Online
glencoe.com
• Extra Examples
• Personal Tutor
• Self-Check Quiz
• Homework Help

Why?
During a 2000-meter race, the coach of a women’s crew team recorded the team’s time at several intervals.

• At 400 meters, the time was 1 minute 32 seconds.
• At 800 meters, it was 3 minutes 4 seconds.
• At 1200 meters, it was 4 minutes 36 seconds.
• At 1600 meters, it was 6 minutes 8 seconds.
They completed the race with a time of 7 minutes 40 seconds.

Recognize Arithmetic Sequences
You can relate the pattern of team times to linear functions. A sequence is a set of numbers, called terms, in a specific order. Look for a pattern in the information given above about the times for the women’s crew team. Make a table to analyze the data.

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>400</th>
<th>800</th>
<th>1200</th>
<th>1600</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (min : sec)</td>
<td>1:32</td>
<td>3:04</td>
<td>4:36</td>
<td>6:08</td>
<td>7:40</td>
</tr>
</tbody>
</table>

As the distance increases in regular intervals, the time increases by 1 minute 32 seconds. Since the difference between successive terms is constant, this is an arithmetic sequence. The difference between the terms is called the common difference d.

Key Concept
Arithmetic Sequence

Words
An arithmetic sequence is a numerical pattern that increases or decreases at a constant rate called the common difference.

Examples
3, 5, 7, 9, 11, \ldots
\[
\begin{align*}
+2 \\
+2 \\
+2 \\
+2 \\
\end{align*}
\]
$d = 2$

33, 29, 25, 21, 17, \ldots
\[
\begin{align*}
-4 \\
-4 \\
-4 \\
-4 \\
\end{align*}
\]
$d = -4$

The three dots at the end of a sequence are called an ellipsis. The ellipsis indicates that there are more terms in the sequence that are not listed.
EXAMPLE 1 Identify Arithmetic Sequences

Determine whether each sequence is an arithmetic sequence. Explain.

- **a.** $-4, -2, 0, 2, \ldots$

 -4 & -2 & 0 & 2
 +2 +2 +2

 The difference between terms in the sequence is constant. Therefore, this sequence is arithmetic.

- **b.** $\frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{13}{16}, \ldots$

 $\frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{13}{16}$
 + $\frac{1}{8}, \frac{1}{4}, \frac{1}{16}$

 This is not an arithmetic sequence. The difference between terms is not constant.

Check Your Progress

1A. $-26, -22, -18, -14, \ldots$

1B. $1, 4, 9, 25, \ldots$

You can use the common difference of an arithmetic sequence to find the next term in the sequence.

EXAMPLE 2 Find the Next Term

Find the next three terms of the arithmetic sequence $15, 9, 3, -3, \ldots$.

1. **Step 1** Find the common difference by subtracting successive terms.

 $15, 9, 3, -3$

 $-6 -6 -6$

 The common difference is -6.

2. **Step 2** Add -6 to the last term of the sequence to get the next term.

 $-3, -9, -15, -21$

 $-6 -6 -6$

The next three terms in the sequence are $-9, -15, -21$.

Check Your Progress

2. Find the next four terms of the arithmetic sequence $9.5, 11.0, 12.5, 14.0, \ldots$.

Each term in an arithmetic sequence can be expressed in terms of the first term a_1 and the common difference d.

<table>
<thead>
<tr>
<th>Term</th>
<th>Symbol</th>
<th>In Terms of a_1 and d</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>first term</td>
<td>a_1</td>
<td>a_1</td>
<td>8</td>
</tr>
<tr>
<td>second term</td>
<td>a_2</td>
<td>$a_1 + d$</td>
<td>$8 + 1(3) = 11$</td>
</tr>
<tr>
<td>third term</td>
<td>a_3</td>
<td>$a_1 + 2d$</td>
<td>$8 + 2(3) = 14$</td>
</tr>
<tr>
<td>fourth term</td>
<td>a_4</td>
<td>$a_1 + 3d$</td>
<td>$8 + 3(3) = 17$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>nth term</td>
<td>a_n</td>
<td>$a_1 + (n - 1)d$</td>
<td>$8 + (n - 1)(3)$</td>
</tr>
</tbody>
</table>

Key Concept n^{th} Term of an Arithmetic Sequence

The n^{th} term of an arithmetic sequence with first term a_1 and common difference d is given by $a_n = a_1 + (n - 1)d$, where n is a positive integer.
EXAMPLE 3 Find the nth Term

a. Write an equation for the nth term of the arithmetic sequence $-12, -8, -4, 0, \ldots$.

Step 1 Find the common difference.

\[
\begin{align*}
-12 & \quad -8 \quad -4 \quad 0 \\
+4 & \quad +4 & & \\
\end{align*}
\]

The common difference is 4.

Step 2 Write an equation.

\[
a_n = a_1 + (n - 1)d
\]

Formula for the nth term

\[
a_1 = -12 \quad \text{and} \quad d = 4
\]

Distributive Property

\[
a_n = -12 + 4n - 4
\]

Simplify.

\[
a_n = 4n - 16
\]

b. Find the 9th term of the sequence.

Substitute 9 for n in the formula for the nth term.

\[
a_n = 4n - 16
\]

\[
a_9 = 4(9) - 16
\]

Multiply.

\[
a_9 = 36 - 16
\]

Simplify.

\[
a_9 = 20
\]

c. Graph the first five terms of the sequence.

<table>
<thead>
<tr>
<th>n</th>
<th>$4n - 16$</th>
<th>a_n</th>
<th>(n, a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$4(1) - 16$</td>
<td>-12</td>
<td>$(1, -12)$</td>
</tr>
<tr>
<td>2</td>
<td>$4(2) - 16$</td>
<td>-8</td>
<td>$(2, -8)$</td>
</tr>
<tr>
<td>3</td>
<td>$4(3) - 16$</td>
<td>-4</td>
<td>$(3, -4)$</td>
</tr>
<tr>
<td>4</td>
<td>$4(4) - 16$</td>
<td>0</td>
<td>$(4, 0)$</td>
</tr>
<tr>
<td>5</td>
<td>$4(5) - 16$</td>
<td>4</td>
<td>$(5, 4)$</td>
</tr>
</tbody>
</table>

d. Which term of the sequence is 32?

In the formula for the nth term, substitute 32 for a_n.

\[
a_n = 4n - 16
\]

\[
a_n = 32
\]

\[
32 + 16 = 4n - 16 + 16
\]

Add 16 to each side.

\[
48 = 4n
\]

Simplify.

\[
12 = n
\]

Divide each side by 4.

Check Your Progress

Consider the arithmetic sequence $3, -10, -23, -36, \ldots$.

3A. Write an equation for the nth term of the sequence.

3B. Find the 15th term in the sequence.

3C. Graph the first five terms of the sequence.

3D. Which term of the sequence is -114?
Arithmetic Sequences and Functions As you can see from Example 3, the graph of the first five terms of the arithmetic sequence lie on a line. An arithmetic sequence is a linear function in which \(n \) is the independent variable, \(a_n \) is the dependent variable, and \(d \) is the slope. The formula can be rewritten as the function \(a(n) = (n - 1)d + a_1 \), where \(n \) is a counting number.

While the domain of most linear functions are all real numbers, in Example 3 the domain of the function is the set of counting numbers and the range of the function is the set of integers.

Real-World EXAMPLE 4 Arithmetic Sequences as Functions

INVITATIONS Marisol is mailing invitations to her quinceañera. The arithmetic sequence $0.41, $0.82, $1.23, $1.64, … represents the cost of postage.

a. Write a function to represent this sequence.

The first term, \(a_1 \), is 0.41. Find the common difference.

\[
0.41 \quad 0.82 \quad 1.23 \quad 1.64
\]

\[
+0.41 +0.41 +0.41
\]

The common difference is 0.41.

\[
a_n = a_1 + (n - 1)d
\]

\[
a_n = 0.41 + (n - 1)0.41
\]

\[
= 0.41 + 0.41n - 0.41
\]

\[
= 0.41n
\]

The function is \(a(n) = 0.41n \).

b. Graph the function and determine the domain.

The rate of change of the function is 0.41. Make a table and plot points.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.41</td>
</tr>
<tr>
<td>2</td>
<td>0.82</td>
</tr>
<tr>
<td>3</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>1.64</td>
</tr>
<tr>
<td>5</td>
<td>2.05</td>
</tr>
</tbody>
</table>

The domain of a function is the number of invitations Marisol mails. So, the domain is \(\{0, 1, 2, 3, \ldots\} \).

Check Your Progress

4. **TRACK** Martin is practicing the long jump for a track and field event. The chart below shows the length of each jump.

<table>
<thead>
<tr>
<th>Jump</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (ft)</td>
<td>8</td>
<td>9.5</td>
<td>11</td>
<td>12.5</td>
</tr>
</tbody>
</table>

A. Write a function to represent this arithmetic sequence.

B. Then graph the function.
Lesson 3-5 Arithmetic Sequences as Linear Functions

Check Your Understanding

Example 1
Determine whether each sequence is an arithmetic sequence. Write yes or no. Explain.

1. 18, 16, 15, 13, ...
2. 4, 9, 14, 19, ...

Example 2
Find the next three terms of each arithmetic sequence.

3. 12, 9, 6, 3, ...
4. −2, 2, 6, 10, ...

Example 3
Write an equation for the nth term of each arithmetic sequence. Then graph the first five terms of the sequence.

5. 15, 13, 11, 9, ...
6. −1, −0.5, 0, 0.5, ...

Example 4
7. SAVINGS Kaia has $525 in a savings account. After one month she has $580 in the account. The next month the balance is $635. The balance after the third month is $690. Write a function to represent the arithmetic sequence. Then graph the function.

Practice and Problem Solving

Example 1
Determine whether each sequence is an arithmetic sequence. Write yes or no. Explain.

8. −3, 1, 5, 9, ...
9. 1, 3, 5, 7, ...
10. −10, −7, −4, 1, ...
11. −12.3, −9.7, −7.1, −4.5, ...

Example 2
Find the next three terms of each arithmetic sequence.

12. 0.02, 1.08, 2.14, 3.2, ...
13. 6, 12, 18, 24, ...
14. 21, 19, 17, 15, ...
15. −1 1/2, 0, 1/2, 1, ...
16. 2 1/3, 2 2/3, 3, 3 1/3, ...
17. 7/12, 1 1/3, 2 1/12, 2 5/6, ...

Example 3
Write an equation for the nth term of the arithmetic sequence. Then graph the first five terms in the sequence.

18. −3, −8, −13, −18, ...
19. −2, 3, 8, 13, ...
20. −11, −15, −19, −23, ...
21. −0.75, −0.5, −0.25, 0, ...

Example 4
22. AMUSEMENT PARKS Shiloh and her friends spent the day at an amusement park. In the first hour, they rode two rides. After 2 hours, they had ridden 4 rides. They had ridden 6 rides after 3 hours.

a. Write a function to represent the arithmetic sequence.
b. Graph the function and determine the domain.

23. JOBS The table shows how Ryan is paid at his lumber yard job.

a. Write a function to represent Ryan’s commission.
b. Graph the function and determine the domain.

<table>
<thead>
<tr>
<th>Linear Feet of 2x4 Planks Cut</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Paid in Commission ($)</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
</tr>
</tbody>
</table>
24. The graph is a representation of an arithmetic sequence.
 a. List the first five terms of the arithmetic sequence.
 b. Write the formula for the \(n \)th term of the arithmetic sequence.
 c. Write the function.

25 NEWSPAPERS A local newspaper charges by the number of words for advertising. Ten words cost $7.50, 15 words cost $8.75, 20 words cost $10, and 25 words cost $11.25. Write a function to represent how much the local newspaper charges for advertising.

26. The fourth term of an arithmetic sequence is 8. If the common difference is 2, what is the first term of the sequence?

27. The common difference of an arithmetic sequence is \(-5\). If \(a_{12}\) is 22, what is \(a_1\)?

28. The first four terms of an arithmetic sequence are 28, 20, 12, and 4. Which term of the sequence is \(-36\)?

29. CARS Jamal’s odometer of his car reads 24,521. If Jamal drives 45 miles every day, what will the odometer reading be in 25 days?

30. YEARBOOKS The yearbook staff is unpacking a box of school yearbooks. The arithmetic sequence 281, 270, 259, 248 … represents the total number of ounces that the box weighs as each yearbook is taken out of the box.
 a. Write a function to represent this sequence.
 b. Determine the weight of each yearbook.
 c. If the box weighs 281 ounces when it is full of yearbooks, how many yearbooks were in the box? (Hint: 1 pound = 16 ounces)

31. MULTIPLE REPRESENTATIONS The Fibonacci sequence can be defined by a recursive formula. This means each term is formulated from one or more previous terms. The first four terms of the sequence are 1, 1, 2, 3, …
 a. LOGICAL Determine the relationship between the terms of the sequence. What are the next five terms in the sequence?
 b. ALGEBRAIC Write a formula for the \(n \)th term of the sequence.
 c. ALGEBRAIC Find the 15th term of the sequence.
 d. ANALYTICAL Explain why the Fibonacci sequence is not an arithmetic sequence.

H.O.T. Problems Use Higher-Order Thinking Skills

32. OPEN ENDED Create an arithmetic sequence with a common difference of \(-10\).

33. CHALLENGE Find the value of \(x\) that makes \(x + 8, 4x + 6, 3x, \ldots\) an arithmetic sequence.

34. REASONING Compare and contrast the domain and range of the linear functions \(Ax + By = C\) and \(a_n = a_1 + (n - 1)d\).

35. CHALLENGE Determine whether each sequence is an arithmetic sequence. Write \(\text{yes}\) or \(\text{no}\). Explain. If yes, find the common difference and the next three terms.
 a. \(2x + 1, 3x + 1, 4x + 1\ldots\)
 b. \(2x, 4x, 8x, \ldots\)

36. WRITING IN MATH Explain how to find a certain term of an arithmetic sequence and how an arithmetic sequence is related to a linear function.
37. **GRIDDED RESPONSE** The population of Westerville is about 35,000. Each year the population increases by about 400. This can be represented by the following equation, where \(n \) represents the number of years and \(p \) represents the population.

\[p = 35,000 + 400n \]

In how many years will the Westerville population be about 38,200?

38. Which relation is a function?

A \((-5, 6), (4, -3), (2, -1), (4, 2)\)

B \((3, -1), (3, -5), (3, 4), (3, 6)\)

C \((-2, 3), (0, 3), (-2, -1), (-1, 2)\)

D \((-5, 6), (4, -3), (2, -1), (0, 2)\)

39. Find the formula for the \(n \)th term of the arithmetic sequence.

\(-7, -4, -1, 2, \ldots\)

F \(a_n = 3n - 4 \)

G \(a_n = -7n + 10 \)

H \(a_n = 3n - 10 \)

J \(a_n = -7n + 4 \)

40. **STATISTICS** A class received the following scores on the ACT. What is the difference between the values of the median and the mode in the scores?

18, 26, 20, 30, 25, 21, 32, 19, 22, 29, 29, 27, 24

A 1

B 2

C 3

D 4

41. Name the constant of variation for each equation. Then find the slope of the line that passes through each pair of points. (Lesson 3-4)

42. Find the slope of the line that passes through each pair of points. (Lesson 3-3)

43. \((5, 3), (-2, 6)\)

44. \((9, 2), (-3, -1)\)

45. \((2, 8), (-2, -4)\)

46. Solve each equation. Check your solution. (Lesson 2-4)

\[5x + 7 = -8 \]

\[8 = 2 + 3n \]

\[12 = \frac{c - 6}{2} \]

47. 49. **SPORTS** The most popular sport for high school girls is basketball, with about 453,000 girls on high school teams. About 369,000 girls play on high school softball teams. Write and use an equation to find how many more girls play on basketball teams than on softball teams. (Lesson 2-1)

49. **SPORTS** The most popular sport for high school girls is basketball, with about 453,000 girls on high school teams. About 369,000 girls play on high school softball teams. Write and use an equation to find how many more girls play on basketball teams than on softball teams. (Lesson 2-1)

50. Graph each point on the same coordinate plane.

A \((2, 5)\)

B \((-2, 1)\)

C \((-3, -1)\)

D \((0, 4)\)

F \((5, -3)\)

G \((-5, 0)\)

Skills Review
If Jolene is not feeling well, she may go to a doctor. The doctor will ask her questions about how she is feeling, take her temperature, and possibly run other tests. Based on her symptoms, the doctor can diagnose Jolene’s illness. This is an example of inductive reasoning. **Inductive reasoning** is used to derive a general rule after observing many events.

To use inductive reasoning:

Step 1 Observe many examples.

Step 2 Look for a pattern.

Step 3 Make a conjecture.

Step 4 Check the conjecture.

Step 5 Discover a likely conclusion.

With **deductive reasoning**, you use a general rule to decide about a specific event. You come to a conclusion by accepting facts. The results of these tests ordered by the doctor may support the original diagnosis or lead to a different conclusion. This is an example of deductive reasoning. There is no conjecturing involved. Consider the two statements below.

1) If the strep test is positive, then the patient has strep throat.

2) Jolene tested positive for strep.

If these two statements are accepted as facts, then the obvious conclusion is that Jolene has strep throat. This is an example of deductive reasoning.

Exercises

1. Explain the difference between **inductive** and **deductive** reasoning. Then give an example of each.

2. When a detective reaches a conclusion about the height of a suspect from the distance between footprints, what kind of reasoning is being used? Explain.

3. When you examine a sequence of numbers and decide that it is an arithmetic sequence, what kind of reasoning are you using? Explain.

4. Once you have found the common difference for an arithmetic sequence, what kind of reasoning do you use to find the 100th term in the sequence?

5. a. Copy and complete the table.

<table>
<thead>
<tr>
<th>3^1</th>
<th>3^2</th>
<th>3^3</th>
<th>3^4</th>
<th>3^5</th>
<th>3^6</th>
<th>3^7</th>
<th>3^8</th>
<th>3^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>81</td>
<td>243</td>
<td>729</td>
<td>2187</td>
<td>6561</td>
<td>19683</td>
</tr>
</tbody>
</table>

 b. Write the sequence of numbers representing the numbers in the ones place.

 c. Find the number in the ones place for the value of 3^{100}. Explain your reasoning. State the type of reasoning that you used.
Then
You recognized arithmetic sequences and related them to linear functions. (Lesson 3-5)

Now
- Write an equation for a proportional relationship.
- Write an equation for a nonproportional relationship.

KY Program of Studies
HS-NPO-S-RP2 Students will translate real-world proportional relationships into mathematical expressions and vice versa. Also addresses HS-AT-S-EI17.

New Vocabulary
inductive reasoning

KY Math Online
- Extra Examples
- Personal Tutor
- Self-Check Quiz
- Homework Help

Planting Flowers

Heather is planting flats of flowers. The table shows the number of flowers that she has planted and the amount of time that she has been working in the garden.

<table>
<thead>
<tr>
<th>Number of flowers planted (p)</th>
<th>1</th>
<th>6</th>
<th>12</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of minutes working (t)</td>
<td>5</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

The relationship between the flowers planted and the time that Heather worked in minutes can be graphed. Let p represent the number of flowers planted. Let t represent the number of minutes that Heather has worked.

When the ordered pairs are graphed, they form a linear pattern. This pattern can be described by an equation.

Proportional Relationships
Using a pattern to find a general rule utilizes inductive reasoning. If the relationship between the domain and range of a relation is linear, the relationship can be described by a linear equation. If the equation is of the form $y = kx$, then the relationship is proportional. In a proportional relationship, the graph will pass through $(0, 0)$. So, direct variations are proportional relationships.

Key Concept
Proportional Relationship

Words
A relationship is proportional if its equation is of the form $y = kx$ and passes through $(0, 0)$.

Example
$y = 3x$

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

The ratio of the value of x to the value of y is constant.
EXAMPLE 1 Proportional Relationships

BONUS PAY Marcos is a personal trainer at a gym. In addition to his salary, he receives a bonus for each client he sees. The table below shows the number of clients Marcos sees and the amount of his bonus.

<table>
<thead>
<tr>
<th>Number of Clients</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonus Pay ($)</td>
<td>45</td>
<td>90</td>
<td>135</td>
<td>180</td>
<td>225</td>
</tr>
</tbody>
</table>

a. Graph the data. What can you deduce from the pattern about the relationship between the number of clients and the bonus pay?

The graph demonstrates a linear relationship between the number of clients and the bonus pay. The graph also passes through the point (0, 0) because when Marcos sees 0 clients, he does not receive any bonus money. Therefore, the relationship is proportional.

b. Write an equation to describe this relationship.

Look for a pattern that can be described in an equation.

The difference between the values for the number of clients is 1. The difference in the values for the bonus pay is 45. This suggests that the \(k \)-value is \(\frac{45}{1} \) or 45. So the equation is \(b = 45c \). You can check this equation by substituting values for \(c \) into the equation.

CHECK

If \(c = 1 \), then \(b = 45(1) \) or 45. ✓

If \(c = 5 \), then \(b = 45(5) \) or 225. ✓

c. Use this equation to predict the amount of Marcos’ bonus if he sees 8 clients.

\[
b = 45c
\]

\[
= 45(8) \text{ or } 360 \quad c = 8
\]

Marcos will receive a bonus of $360 if he sees 8 clients.

Check Your Progress

1. **CHARITY** A professional soccer team is donating a certain amount of money to a local charity for each goal they score during the regular season.

<table>
<thead>
<tr>
<th>Number of Goals</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donation ($)</td>
<td>75</td>
<td>150</td>
<td>225</td>
<td>300</td>
<td>375</td>
</tr>
</tbody>
</table>

A. Graph the data. What can you deduce from the pattern about the relationship between the number of goals and the money donated?

B. Write an equation to describe this relationship.

C. Use this equation to predict how much money will be donated for 12 goals.
Nonproportional Relationships Some linear equations can represent a nonproportional relationship. If the ratio of the value of x to the value of y is different for select ordered pairs that are on the line, the equation is nonproportional and the graph will not pass through $(0, 0)$.

EXAMPLE 2 Nonproportional Relationships

Write an equation in function notation for the graph.

Understand You are asked to write an equation of the relation that is graphed in function notation.

Plan Find the difference between the x-values and the difference between the y-values.

Solve Select points from the graph and place them in a table.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>

The difference between the x-values is 1, while the difference between the y-values is 3. This suggests that $y = 3x$ or $f(x) = 3x + 6$.

If $x = 1$, then $y = 3(1)$ or 3. But the y-value for $x = 1$ is 9. Let's try some other values and see if we can detect a pattern.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3x$</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>y</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>

This pattern shows that 6 should be added to one side of the equation. Thus, the equation is $y = 3x + 6$ or $f(x) = 3x + 6$.

Check Compare the ordered pairs from the table to the graph. The points correspond. ✓

Check Your Progress

2. Write an equation in function notation for the relation shown in the table.

A. | x | 1 | 2 | 3 | 4 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

B. Write an equation in function notation for the graph.
Example 1

p. 196

1. **GEOMETRY** The table shows the perimeter of a square with sides of a given length.

<table>
<thead>
<tr>
<th>Side Length (in.)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter (in.)</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

a. Graph the data.

b. Write an equation to describe the relationship.

c. What conclusion can you make regarding the relationship between the side and the perimeter?

Example 2

p. 197

Write an equation in function notation for each relation.

Example 1

p. 196

4. The table shows the pages of comic books read.

<table>
<thead>
<tr>
<th>Books Read</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pages Read</td>
<td>35</td>
<td>70</td>
<td>105</td>
<td>140</td>
<td>175</td>
</tr>
</tbody>
</table>

a. Write an equation for the data.

b. Graph the equation.

c. Find the number of pages read if 8 comic books were read.

Example 2

p. 197

Write an equation in function notation for each relation.

Example 2

p. 197

5.

6.

7.

8.
For each arithmetic sequence, determine the related function. Then determine if the function is proportional or nonproportional. Explain.

9. 0, 3, 6, …

10. 4, 0, –4

11. PHOTOGRAPH Marielle wants to enlarge a picture of her family. The store charges $2.50 to develop the picture, and the table shows the list of prices for enlarging photographs. Write an equation to represent the total price y of the photograph with an enlargement of x size.

<table>
<thead>
<tr>
<th>Size</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 × 5</td>
<td>2.25</td>
</tr>
<tr>
<td>4 × 6</td>
<td>4.50</td>
</tr>
<tr>
<td>5 × 7</td>
<td>6.75</td>
</tr>
<tr>
<td>8 × 10</td>
<td>9</td>
</tr>
</tbody>
</table>

12. SNOWFALL The total snowfall each hour of a winter snowstorm is shown in the table below.

<table>
<thead>
<tr>
<th>Hour</th>
<th>Inches of Snowfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.65</td>
</tr>
<tr>
<td>2</td>
<td>3.30</td>
</tr>
<tr>
<td>3</td>
<td>4.95</td>
</tr>
<tr>
<td>4</td>
<td>6.60</td>
</tr>
</tbody>
</table>

a. Write an equation to fit the data in the table.

b. Describe the relationship between the hour and inches of snowfall.

13. FUNDRAISER The Cougar Pep Squad wants to sell school T-shirts in the school bookstore for the spring dance. The cost for the pep squad to order T-shirts in their school colors is represented by the equation $C = 2t + 3$.

a. Make a table of values that represents this relationship.

b. Rewrite the equation in function notation.

c. Graph the function.

d. Describe the relationship between the number of T-shirts and the cost.

14. FIND THE ERROR Quentin and Claudia are writing an equation to describe the following relationship. Is either of them correct? Explain.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Quentin: Since the difference in the y-values is half as much as the difference in the x-values, the equation is $y = \frac{1}{2}x$.

Claudia: Since the difference in the x-values is half as much as the difference in the y-values, the equation is $y = 2x$.

15. OPEN ENDED Create a number sequence in which the first term is 4. Explain the pattern that you used. Write an equation that represents your sequence.

16. CHALLENGE Describe how inductive reasoning can be used to write an equation from a pattern.

17. REASONING Provide a counterexample to the following statement. The related function of an arithmetic sequence is always proportional. Explain why the counterexample is true.

18. WRITING IN MATH Compare and contrast proportional relationships with nonproportional relationships.
19. What is the slope of a line that contains the point (1, -5) and has the same y-intercept as $2x - y = 9$?

A -9
B -7
C 2
D 4

20. SHORT RESPONSE
$\triangle FGR$ is an isosceles triangle. What is the measure of $\angle G$?

![Diagram of triangle FGR with sides 14 cm, 21.1 cm, and 98°]

21. Luis deposits $25 each week into a savings account from his part-time job. If he has $350 in savings now, how much will he have in 12 weeks?

F 600
G 625
H 650
J 675

22. GEOMETRY
Omar and Mackenzie want to build a zip-line by attaching one end of a rope to their 8-foot-tall tree house and anchoring the other end to the ground 28 feet away from the base of the tree house. How long, to the nearest foot, does the piece of rope need to be?

A 26 ft
B 27 ft
C 28 ft
D 29 ft

Spiral Review

Find the next three terms in each sequence. (Lesson 3-5)

23. $3, 13, 23, 33, \ldots$
24. $-2, -1.4, -0.8, -0.2, \ldots$
25. $\frac{3}{4}, \frac{7}{8}, 1, \frac{9}{8}, \ldots$

Suppose y varies directly as x. Write a direct variation equation that relates x and y. Then solve. (Lesson 3-4)

26. If $y = 45$ when $x = 9$, find y when $x = 7$.

27. If $y = -7$ when $x = -1$, find x when $y = -84$.

28. GENETICS
About $\frac{2}{25}$ of the male population in the world cannot distinguish red from green. If there are 14 boys in the ninth grade who cannot distinguish red from green, about how many ninth-grade boys are there in all? Write and solve an equation to find the answer. (Lesson 2-3)

29. GEOMETRY
The volume V of a cone equals one-third times the product of π, the square of the radius r of the base, and the height h. (Lesson 2-1)

a. Write the formula for the volume of a cone.

b. Find the volume of a cone if r is 10 centimeters and h is 30 centimeters.

Skills Review

Solve each equation for y. (Lesson 2-8)

30. $3x = y + 7$
31. $2y = 6x - 10$
32. $9y + 2x = 12$

Graph each equation. (Lesson 3-1)

33. $y = x - 8$
34. $x - y = -4$
35. $2x + 4y = 8$
Chapter Summary

Key Concepts

Graphing Linear Equations (Lesson 3-1)

- The standard form of a linear equation is $Ax + By = C$, where $A \geq 0$, A and B are not both zero, and A, B, and C are integers whose greatest common factor is 1.

Solving Linear Equations by Graphing (Lesson 3-2)

- Values of x for which $f(x) = 0$ are called zeros of the function f. The zero of a function is located at the x-intercept of the graph of the function.

Rate of Change and Slope (Lesson 3-3)

- If x is the independent variable and y is the dependent variable, then rate of change equals $\frac{\text{change in } y}{\text{change in } x}$.
- The slope of a line is the ratio of the rise to the run.

 \[m = \frac{y_2 - y_1}{x_2 - x_1} \]

Direct Variation (Lesson 3-4)

- A direct variation is described by an equation of the form $y = kx$, where $k \neq 0$.

Arithmetic Sequences (Lesson 3-5)

- The nth term a_n of an arithmetic sequence with first term a_1 and common difference d is given by $a_n = a_1 + (n - 1)d$, where n is a positive integer.

Proportional and Nonproportional Relationships (Lesson 3-6)

- In a proportional relationship, the graph will pass through $(0, 0)$.
- In a nonproportional relationship, the graph will not pass through $(0, 0)$.

Key Vocabulary

- arithmetic sequence (p. 187)
- common difference (p. 187)
- constant (p. 153)
- constant of variation (p. 180)
- direct variation (p. 180)
- inductive reasoning (p. 195)
- linear equation (p. 153)
- linear function (p. 161)
- rate of change (p. 170)
- root (p. 161)
- sequence (p. 187)
- slope (p. 172)
- standard form (p. 153)
- terms (p. 187)
- x-intercept (p. 154)
- y-intercept (p. 154)
- zero (p. 161)

Vocabulary Check

State whether each sentence is true or false. If false, replace the underlined word or number to make a true sentence.

1. The x-coordinate of the point at which a graph of an equation crosses the x-axis is an x-intercept.
2. A linear equation is the equation of a line.
3. The difference between the terms of an arithmetic sequence is called the constant of variation.
4. The regular form of a linear equation is $Ax + By = C$.
5. Values of x for which $f(x) = 0$ are called zeros of the function f.
6. Any two points on a line can be used to determine the slope.
7. The slope of the line $y = 5$ is 5.
8. The graph of any direct variation equation passes through $(0, 1)$.
9. A ratio that describes, on average, how much one quantity changes with respect to a change in another quantity is a rate of change.
10. In the linear equation $4x + 3y = 12$, the constant is 12.

Chapter 3 Study Guide and Review
Lesson-by-Lesson Review

3-1 Graphing Linear Equations (pp. 153–160)

Find the x-intercept and y-intercept of each linear function.

11. \(\begin{array}{c|c} x & y \\ \hline -8 & 0 \\ -4 & 3 \\ 0 & 6 \\ 4 & 9 \\ 8 & 12 \\ \end{array} \)

Graph each equation.

13. \(y = -x + 2 \)

14. \(x + 5y = 4 \)

15. \(2x - 3y = 6 \)

16. \(5x + 2y = 10 \)

17. **SOUND** The distance \(d \) in kilometers that sound waves travel through water is given by \(d = 1.6t \), where \(t \) is the time in seconds.

 a. Make a table of values and graph the equation.

 b. Use the graph to estimate how far sound can travel through water in 7 seconds.

EXAMPLE 1

Graph \(3x - y = 4 \) by using the x- and y-intercepts.

Find the x-intercept. Find the y-intercept.

\[
\begin{align*}
3x - y &= 4 \\
3x - 0 &= 4 & \text{Let } y = 0. \\
x &= 4 \\
\end{align*}
\]

\[
\begin{align*}
3(0) - y &= 4 & \text{Let } x = 0. \\
- y &= 4 \\
x &= -\frac{4}{3} \\
\end{align*}
\]

x-intercept: \(\frac{4}{3} \)

y-intercept: \(-4 \)

The graph intersects the x-axis at \(\left(\frac{4}{3}, 0 \right) \) and the y-axis at \((0, -4) \). Plot these points. Then draw the line through them.

3-2 Solving Linear Equations by Graphing (pp. 161–168)

Find the root of each equation.

18. \(0 = 2x + 8 \)

19. \(0 = 4x - 24 \)

20. \(3x - 5 = 0 \)

21. \(6x + 3 = 0 \)

Solve each equation by graphing.

22. \(0 = 16 - 8x \)

23. \(0 = 21 + 3x \)

24. \(-4x - 28 = 0 \)

25. \(25x - 225 = 0 \)

26. **TEXT MESSAGING** Sean is sending a text message to a friend. The function \(y = 6 - \frac{x}{5} \) represents the number of words \(y \) the message can hold after he types \(x \) words. Find the zero and explain what it means in the context of this situation.

EXAMPLE 2

Solve \(3x + 1 = -2 \) by graphing.

The first step is to find the related function.

\[
\begin{align*}
3x + 1 &= -2 \\
3x + 1 + 2 &= -2 + 2 \\
3x + 3 &= 0 \\
\end{align*}
\]

The related function is \(y = 3x + 3 \).

The graph intersects the x-axis at \(-1\). So, the solution is \(-1\).
3-3 Rate of Change and Slope (pp. 169–178)

Find the slope of the line that passes through each pair of points.
29. (0, 5), (6, 2)
30. (−6, 4), (−6, −2)
31. DIGITAL CAMERAS The average cost of using an online photo finisher decreased from $0.50 per print to $0.27 per print between 2002 and 2007. Find the average rate of change in the cost. Explain what it means.

EXAMPLE 3

Direct Variation (pp. 180–186)

Graph each equation.
32. \(y = x \)
33. \(y = \frac{4}{3}x \)
34. \(y = −2x \)

Suppose \(y \) varies directly as \(x \). Write a direct variation equation that relates \(x \) and \(y \). Then solve.
35. If \(y = 15 \) when \(x = 2 \), find \(y \) when \(x = 8 \).
36. If \(y = −6 \) when \(x = 9 \), find \(x \) when \(y = −3 \).
37. If \(y = 4 \) when \(x = −4 \), find \(y \) when \(x = 7 \).

38. JOBS Suppose you earn $127 for working 20 hours.
 a. Write a direct variation equation relating your earnings to the number of hours worked.
 b. How much would you earn for working 35 hours?

EXAMPLE 4

Suppose \(y \) varies directly as \(x \), and \(y = −24 \) when \(x = 8 \).

\[\frac{y}{x} = \frac{−24}{8} = −3 \]

So, the direct variation equation is \(y = −3x \).

b. Use the direct variation equation to find \(x \) when \(y = −18 \).
 \[\frac{−3x}{8} = \frac{−18}{8} \]
 \[−3x = −18 \]
 \[x = 6 \]

Therefore, \(x = 6 \) when \(y = −18 \).
Find the next three terms of each arithmetic sequence.

39. 6, 11, 16, 21, …

40. 1.4, 1.2, 1.0, …

Write an equation for the \(n \)th term of each arithmetic sequence.

41. \(a_1 = 6, d = 5, n = 11 \)

42. 28, 25, 22, 19, … for \(n = 8 \)

43. **SCIENCE** The table shows the distance traveled by sound in water. Write an equation for this sequence. Then find the time for sound to travel 72,300 feet.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (ft)</td>
<td>4820</td>
<td>9640</td>
<td>14,460</td>
<td>19,280</td>
</tr>
</tbody>
</table>

EXAMPLE 6

Write an equation in function notation for this relation.

44.

![Graph of a linear function]

45. **ANALYZE TABLES** The table shows the cost of picking your own strawberries at a farm.

<table>
<thead>
<tr>
<th>Number of Pounds</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cost ($)</td>
<td>1.25</td>
<td>2.50</td>
<td>3.75</td>
<td>5.00</td>
</tr>
</tbody>
</table>

a. Graph the data.

b. Write an equation in function notation to describe this relationship.

c. How much would it cost if you picked 6 pounds of strawberries?

The difference between \(y \) and \(2x \) is always 1. So the equation is \(y = 2x + 1 \). Since this relation is also a function, it can be written as \(f(x) = 2x + 1 \).
1. **TEMPERATURE** The equation to convert Celsius temperature \(C \) to Kelvin temperature \(K \) is shown in the graph.

\[
K = C + 273
\]

- \((-273, 0)\)
- \((0, 273)\)
- \((0, -273)\)
- \((273, 0)\)

a. State the independent and dependent variables. Explain.

b. Determine the \(x \)-intercept and \(y \)-intercept and describe what the intercepts mean in the context of the situation.

Graph each equation.

2. \(y = x + 2 \)
3. \(y = 4x \)
4. \(x + 2y = -1 \)
5. \(-3x = 5 - y \)

Solve each equation by graphing.

6. \(4x + 2 = 0 \)
7. \(0 = 6 - 3x \)
8. \(5x + 2 = -3 \)
9. \(12x = 4x + 16 \)

Find the slope of the line that passes through each pair of points.

10. \((5, 8), (-3, 7)\)
11. \((5, -2), (3, -2)\)
12. \((-4, 7), (8, -1)\)
13. \((6, -3), (6, 4)\)

14. **MULTIPLE CHOICE** Which is the slope of the linear function shown in the graph?

\[y = \frac{5}{2} x \]

A \(\frac{5}{2} \)
B \(\frac{2}{5} \)
C \(\frac{5}{2} \)
D \(\frac{2}{5} \)

Suppose \(y \) varies directly as \(x \). Write a direct variation equation that relates \(x \) and \(y \). Then solve.

15. If \(y = 6 \) when \(x = 9 \), find \(x \) when \(y = 12 \).
16. When \(y = -8 \), \(x = 8 \). What is \(x \) when \(y = -6 \)?
17. If \(y = -5 \) when \(x = -2 \), what is \(y \) when \(x = 14 \)?
18. If \(y = 2 \) when \(x = -12 \), find \(y \) when \(x = -4 \).

19. **BIOLOGY** The number of pints of blood in a human body varies directly with the person’s weight. A person who weighs 120 pounds has about 8.4 pints of blood in his or her body.

a. Write and graph an equation relating weight and amount of blood in a person’s body.

b. Predict the weight of a person whose body holds 12 pints of blood.

Find the next three terms in each sequence.

20. \(5, -10, 15, -20, 25, … \)
21. \(5, 5, 6, 8, 11, 15, … \)

Determine whether each sequence is an arithmetic sequence. If it is, state the common difference.

22. \(-40, -32, -24, -16, … \)
23. \(0.75, 1.5, 3, 6, 12, … \)
24. \(5, 17, 29, 41, … \)

25. **MULTIPLE CHOICE** In each figure, only one side of each regular pentagon touches. Each side of each pentagon is 1 centimeter. If the pattern continues, what is the perimeter of a figure that has 6 pentagons?

F 15 cm
H 20 cm
G 25 cm
J 30 cm
Reading Math Problems

The first step to solving any math problem is to read the problem. When reading a math problem to get the information you need to solve, it is helpful to use special reading strategies.

Strategies for Reading Math Problems

Step 1
Read the problem quickly to gain a general understanding of it.
- **Ask yourself:** “What do I know?” “What do I need to find out?”
- **Think:** “Is there enough information to solve the problem? Is there extra information?”
- **Highlight:** If you are allowed to write in your test booklet, underline or highlight important information. Cross out any information you don’t need.

Step 2
Reread the problem to identify relevant facts.
- **Analyze:** Determine how the facts are related.
- **Key Words:** Look for keywords to solve the problem.
- **Vocabulary:** Identify mathematical terms. Think about the concepts and how they are related.
- **Plan:** Make a plan to solve the problem.
- **Estimate:** Quickly estimate the answer.

Step 3
Identify any obvious wrong answers.
- **Eliminate:** Eliminate any choices that are very different from your estimate.
- **Units of Measure:** Identify choices that are possible answers based on the units of measure in the question. For example, if the question asks for area, only answers in square units will work.

Step 4
Look back after solving the problem.
- **Check:** Make sure you have answered the question.
EXAMPLE

Read the problem. Identify what you need to know. Then use the information in the problem to solve.

Jamal, Gina, Lisa, and Renaldo are renting a car for a road trip. The cost of renting the car is given by the function $C = 12.5 + 21d$, where C is the total cost for renting the car for d days. What does the slope of the function represent?

A number of people C number of days
B cost per day D miles per gallon

Read the problem carefully. The number of people going on the trip is not needed information. You need to know what the slope of the function represents.

Slope is a ratio. The word “per” in answers B and D imply that they are both ratios. Since choices A and C are not ratios, eliminate them.

The problem says that C represents the cost of renting the car. So the slope cannot represent the miles per gallon of the car. The slope must represent the cost per day.

The correct answer is B.

Exercises

Read each problem. Identify what you need to know. Then use the information in the problem to solve.

1. What does the x-intercept mean in the context of the situation given below?

 ![Draining a Bathtub Graph]

 A amount of time needed to drain the bathtub
 B number of gallons in the tub when the drain is pulled
 C number of gallons in the tub after t minutes
 D amount of water drained each minute

2. The amount of money raised by a charity carwash varies directly as the number of cars washed. When 11 cars are washed, $79.75 in profit is raised. How many cars would need to be washed to raise $174.00?

 F 10 cars H 22 cars
 G 16 cars J 24 cars

3. The function $C = 25 + 0.45(x - 450)$ represents the cost of a monthly cell phone bill, when x minutes are used. Which statement best represents the formula for the cost of the bill?

 A The cost consists of a flat fee of $0.45 and $25 for each minute used over 450.
 B The cost consists of a flat fee of $450 and $0.45 for each minute used over 25.
 C The cost consists of a flat fee of $25 and $0.45 for each minute used over 450.
 D The cost consists of a flat fee of $25 and $0.45 for each minute used.
Multiple Choice

Read each question. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

1. Horatio is purchasing a computer cable for $15.49. If the sales tax rate in his state is 5.25%, what is the total cost of the purchase?
 - $16.42
 - $15.73
 - $16.30
 - $15.62

2. What is the value of the expression below?
 \[3^2 + 5^3 - 2^5\]
 - 14
 - 102
 - 34
 - 166

3. What is the slope of the linear function graphed below?
 - \(-\frac{1}{3}\)
 - \(\frac{2}{3}\)
 - \(\frac{1}{2}\)
 - \(\frac{3}{2}\)

4. If the graph of a line has a positive slope and a negative y-intercept, what happens to the x-intercept if the slope and the y-intercept are doubled?
 - The x-intercept becomes four times larger.
 - The x-intercept becomes twice as large.
 - The x-intercept becomes one-fourth as large.
 - The x-intercept remains the same.

5. Suppose that y varies directly as x, and y = 14 when x = 4. What is the value of y when x = 9?
 - 25.5
 - 29.5
 - 27.5
 - 31.5

6. Write an equation for the nth term of the arithmetic sequence shown below.
 \(-2, 1, 4, 7, 10, 13, \ldots\)
 - \(a_n = 2n - 1\)
 - \(a_n = 3n + 2\)
 - \(a_n = 2n + 4\)
 - \(a_n = 3n - 5\)

7. The table shows the labor charges of an electrician for jobs of different lengths.

<table>
<thead>
<tr>
<th>Number of Hours (n)</th>
<th>Labor Charges (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$60</td>
</tr>
<tr>
<td>2</td>
<td>$85</td>
</tr>
<tr>
<td>3</td>
<td>$110</td>
</tr>
<tr>
<td>4</td>
<td>$135</td>
</tr>
</tbody>
</table>

Which function represents the situation?
 - \(C(n) = 25n + 35\)
 - \(C(n) = 35n + 25\)
 - \(C(n) = 25n + 30\)
 - \(C(n) = 35n + 40\)

8. Find the value of x so that the figures have the same area.

 \[
 \begin{array}{|c|c|}
 \hline
 \text{6 cm} & (x - 1) \text{ cm} \\
 \hline
 \text{4 cm} & x \text{ cm} \\
 \hline
 \end{array}
 \]

 - 3
 - 5
 - 4
 - 6

9. The table shows the total amount of rain during a storm. Write a formula to find out how much rain will fall after a given hour.

<table>
<thead>
<tr>
<th>Hour (h)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches (n)</td>
<td>0.45</td>
<td>0.9</td>
<td>1.35</td>
<td>1.8</td>
</tr>
</tbody>
</table>

10. The scale on a map is 1.5 inches = 6 miles. If two cities are 4 inches apart on the map, what is the actual distance between the cities?

 Test-Taking Tip You can eliminate unreasonable answers to multiple choice items. The line slopes up from left to right, so the slope is positive. Answer choice A can be eliminated.
14. Write an expression that represents the total surface area (including the top and bottom) of a tower of \(n \) cubes each having a side length of \(s \). (Do not include faces that cover each other.)

\[A = \sum_{i=1}^{n} 2s^2 + \sum_{i=1}^{n-1} 2(s 	imes s) \]

15. **GRIDDED RESPONSE** There are 120 members in the North Carolina House of Representatives. This is 70 more than the number of members in the North Carolina Senate. How many members are in the North Carolina Senate?

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

16. A hot air balloon was at a height of 60 feet above the ground when it began to ascend. The balloon climbed at a rate of 15 feet per minute.

 a. Make a table that shows the height of the hot air balloon after climbing for 1, 2, 3, and 4 minutes.

 b. Let \(t \) represent the time in minutes since the balloon began climbing. Write an algebraic equation for a sequence that can be used to find the height, \(h \), of the balloon after \(t \) minutes.

 c. Use your equation from part b to find the height, in feet, of the hot air balloon after climbing for 8 minutes.